2024屆內蒙古北重公司第三中學高三下學期模擬考試數(shù)學試題試卷_第1頁
2024屆內蒙古北重公司第三中學高三下學期模擬考試數(shù)學試題試卷_第2頁
2024屆內蒙古北重公司第三中學高三下學期模擬考試數(shù)學試題試卷_第3頁
2024屆內蒙古北重公司第三中學高三下學期模擬考試數(shù)學試題試卷_第4頁
2024屆內蒙古北重公司第三中學高三下學期模擬考試數(shù)學試題試卷_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆內蒙古北重公司第三中學高三下學期模擬考試數(shù)學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則函數(shù)在區(qū)間內單調遞增的概率是()A.B.C.D.2.某校團委對“學生性別與中學生追星是否有關”作了一次調查,利用列聯(lián)表,由計算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結論是()A.有99%以上的把握認為“學生性別與中學生追星無關”B.有99%以上的把握認為“學生性別與中學生追星有關”C.在犯錯誤的概率不超過0.5%的前提下,認為“學生性別與中學生追星無關”D.在犯錯誤的概率不超過0.5%的前提下,認為“學生性別與中學生追星有關”3.已知,則的大小關系是()A. B. C. D.4.設函數(shù)滿足,則的圖像可能是A. B.C. D.5.已知等差數(shù)列的前n項和為,且,則()A.4 B.8 C.16 D.26.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.7.公元前世紀,古希臘哲學家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當比賽開始后,若阿基里斯跑了米,此時烏龜便領先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米8.已知函數(shù)的圖象的一條對稱軸為,將函數(shù)的圖象向右平行移動個單位長度后得到函數(shù)圖象,則函數(shù)的解析式為()A. B.C. D.9.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要10.“角谷猜想”的內容是:對于任意一個大于1的整數(shù),如果為偶數(shù)就除以2,如果是奇數(shù),就將其乘3再加1,執(zhí)行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.911.已知隨機變量的分布列是則()A. B. C. D.12.若函數(shù)在時取得極值,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.驗證碼就是將一串隨機產(chǎn)生的數(shù)字或符號,生成一幅圖片,圖片里加上一些干擾象素(防止),由用戶肉眼識別其中的驗證碼信息,輸入表單提交網(wǎng)站驗證,驗證成功后才能使用某項功能.很多網(wǎng)站利用驗證碼技術來防止惡意登錄,以提升網(wǎng)絡安全.在抗疫期間,某居民小區(qū)電子出入證的登錄驗證碼由0,1,2,…,9中的五個數(shù)字隨機組成.將中間數(shù)字最大,然后向兩邊對稱遞減的驗證碼稱為“鐘型驗證碼”(例如:如14532,12543),已知某人收到了一個“鐘型驗證碼”,則該驗證碼的中間數(shù)字是7的概率為__________.14.已知內角,,的對邊分別為,,.,,則_________.15.如圖所示,在邊長為4的正方形紙片中,與相交于.剪去,將剩余部分沿,折疊,使、重合,則以、、、為頂點的四面體的外接球的體積為________.16.已知,則滿足的的取值范圍為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱中,,點分別為和的中點.(Ⅰ)棱上是否存在點使得平面平面?若存在,寫出的長并證明你的結論;若不存在,請說明理由.(Ⅱ)求二面角的余弦值.18.(12分)已知在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線與直線的直角坐標方程;(2)若曲線與直線交于兩點,求的值.19.(12分)已知橢圓的右頂點為,為上頂點,點為橢圓上一動點.(1)若,求直線與軸的交點坐標;(2)設為橢圓的右焦點,過點與軸垂直的直線為,的中點為,過點作直線的垂線,垂足為,求證:直線與直線的交點在橢圓上.20.(12分)已知函數(shù).(1)若,,求函數(shù)的單調區(qū)間;(2)時,若對一切恒成立,求a的取值范圍.21.(12分)已知等比數(shù)列是遞增數(shù)列,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.22.(10分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點.(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關系,并給出證明.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】函數(shù)在區(qū)間內單調遞增,,在恒成立,在恒成立,,函數(shù)在區(qū)間內單調遞增的概率是,故選B.2、B【解析】

通過與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項.【詳解】解:,可得有99%以上的把握認為“學生性別與中學生追星有關”,故選B.【點睛】本題考查了獨立性檢驗的應用問題,屬于基礎題.3、B【解析】

利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對數(shù)運算性質比較a,c進而可得結論.【詳解】依題意,函數(shù)與函數(shù)關于直線對稱,則,即,又,所以,.故選:B.【點睛】本題主要考查對數(shù)、指數(shù)的大小比較,屬于基礎題.4、B【解析】根據(jù)題意,確定函數(shù)的性質,再判斷哪一個圖像具有這些性質.由得是偶函數(shù),所以函數(shù)的圖象關于軸對稱,可知B,D符合;由得是周期為2的周期函數(shù),選項D的圖像的最小正周期是4,不符合,選項B的圖像的最小正周期是2,符合,故選B.5、A【解析】

利用等差的求和公式和等差數(shù)列的性質即可求得.【詳解】.故選:.【點睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質,考查基本量的計算,難度容易.6、A【解析】

由題意求得c與的值,結合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質,屬于基礎題.7、D【解析】

根據(jù)題意,是一個等比數(shù)列模型,設,由,解得,再求和.【詳解】根據(jù)題意,這是一個等比數(shù)列模型,設,所以,解得,所以.故選:D【點睛】本題主要考查等比數(shù)列的實際應用,還考查了建模解模的能力,屬于中檔題.8、C【解析】

根據(jù)輔助角公式化簡三角函數(shù)式,結合為函數(shù)的一條對稱軸可求得,代入輔助角公式得的解析式.根據(jù)三角函數(shù)圖像平移變換,即可求得函數(shù)的解析式.【詳解】函數(shù),由輔助角公式化簡可得,因為為函數(shù)圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數(shù)的圖象向右平行移動個單位長度可得,則,故選:C.【點睛】本題考查了輔助角化簡三角函數(shù)式的應用,三角函數(shù)對稱軸的應用,三角函數(shù)圖像平移變換的應用,屬于中檔題.9、B【解析】

由線面關系可知,不能確定與平面的關系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當時,存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【點睛】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.10、B【解析】

模擬程序運行,觀察變量值可得結論.【詳解】循環(huán)前,循環(huán)時:,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環(huán),輸出.故選:B.【點睛】本題考查程序框圖,考查循環(huán)結構,解題時可模擬程序運行,觀察變量值,從而得出結論.11、C【解析】

利用分布列求出,求出期望,再利用期望的性質可求得結果.【詳解】由分布列的性質可得,得,所以,,因此,.故選:C.【點睛】本題考查離散型隨機變量的分布列以及期望的求法,是基本知識的考查.12、D【解析】

對函數(shù)求導,根據(jù)函數(shù)在時取得極值,得到,即可求出結果.【詳解】因為,所以,又函數(shù)在時取得極值,所以,解得.故選D【點睛】本題主要考查導數(shù)的應用,根據(jù)函數(shù)的極值求參數(shù)的問題,屬于??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

首先判斷出中間號碼的所有可能取值,由此求得基本事件的總數(shù)以及中間數(shù)字是的事件數(shù),根據(jù)古典概型概率計算公式計算出所求概率.【詳解】根據(jù)“鐘型驗證碼”中間數(shù)字最大,然后向兩邊對稱遞減,所以中間的數(shù)字可能是.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.所以該驗證碼的中間數(shù)字是7的概率為.故答案為:【點睛】本小題主要考查古典概型概率計算,考查分類加法計數(shù)原理、分類乘法計數(shù)原理的應用,考查運算求解能力,屬于中檔題.14、【解析】

利用正弦定理求得角B,再利用二倍角的余弦公式,即可求解.【詳解】由正弦定理得,,.故答案為:.【點睛】本題考查了正弦定理求角,三角恒等變換,屬于基礎題.15、【解析】

將三棱錐置入正方體中,利用正方體體對角線為三棱錐外接球的直徑即可得到答案.【詳解】由已知,將三棱錐置入正方體中,如圖所示,,故正方體體對角線長為,所以外接球半徑為,其體積為.故答案為:.【點睛】本題考查三棱錐外接球的體積問題,一般在處理特殊幾何體的外接球問題時,要考慮是否能將其置入正(長)方體中,是一道中檔題.16、【解析】

將f(x)寫成分段函數(shù)形式,分析得f(x)為奇函數(shù)且在R上為增函數(shù),利用奇偶性和單調性解不等式即可得到答案.【詳解】根據(jù)題意,f(x)=x|x|=,則f(x)為奇函數(shù)且在R上為增函數(shù),則f(2x﹣1)+f(x)≥0?f(2x﹣1)≥﹣f(x)?f(2x﹣1)≥f(﹣x)?2x﹣1≥﹣x,解可得x≥,即x的取值范圍為[,+∞);故答案為:[,+∞).【點睛】本題考查分段函數(shù)的奇偶性與單調性的判定以及應用,注意分析f(x)的奇偶性與單調性.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)存在點滿足題意,且,證明詳見解析;(Ⅱ).【解析】

(Ⅰ)可考慮采用補形法,取的中點為,連接,可結合等腰三角形性質和線面垂直性質,先證平面,即,若能證明,則可得證,可通過我們反推出點對應位置應在處,進而得證;(Ⅱ)采用建系法,以為坐標原點,以分別為軸建立空間直角坐標系,分別求出兩平面對應法向量,再結合向量夾角公式即可求解;【詳解】(Ⅰ)存在點滿足題意,且.證明如下:取的中點為,連接.則,所以平面.因為是的中點,所以.在直三棱柱中,平面平面,且交線為,所以平面,所以.在平面內,,,所以,從而可得.又因為,所以平面.因為平面,所以平面平面.(Ⅱ)如圖所示,以為坐標原點,以分別為軸建立空間直角坐標系.易知,,,,所以,,.設平面的法向量為,則有取,得.同理可求得平面的法向量為.則.由圖可知二面角為銳角,所以其余弦值為.【點睛】本題考查面面垂直的判定定理、向量法求二面角的余弦值,屬于中檔題18、(1)曲線的直角坐標方程為;直線的直角坐標方程為(2)【解析】

(1)由公式可化極坐標方程為直角坐標方程,消參法可化參數(shù)方程為普通方程;(2)聯(lián)立兩曲線方程,解方程組得兩交點坐標,從而得兩點間距離.【詳解】解:(1)曲線的直角坐標方程為直線的直角坐標方程為(2)據(jù)解,得或【點睛】本題考查極坐標與直角坐標的互化,考查參數(shù)方程與普通方程的互化,屬于基礎題.19、(1)(2)見解析【解析】

(1)直接求出直線方程,與橢圓方程聯(lián)立求出點坐標,從而可得直線方程,得其與軸交點坐標;(2)設,則,求出直線和的方程,從而求得兩直線的交點坐標,證明此交點在橢圓上,即此點坐標適合橢圓方程.代入驗證即可.注意分和說明.【詳解】解:本題考查直線與橢圓的位置關系的綜合,(1)由題知,,則.因為,所以,則直線的方程為,聯(lián)立,可得故.則,直線的方程為.令,得,故直線與軸的交點坐標為.(2)證明:因為,,所以.設點,則.設當時,設,則,此時直線與軸垂直,其直線方程為,直線的方程為,即.在方程中,令,得,得交點為,顯然在橢圓上.同理當時,交點也在橢圓上.當時,可設直線的方程為,即.直線的方程為,聯(lián)立方程,消去得,化簡并解得.將代入中,化簡得.所以兩直線的交點為.因為,又因為,所以,則,所以點在橢圓上.綜上所述,直線與直線的交點在橢圓上.【點睛】本題考查直線與橢圓相交問題,解題方法是解析幾何的基本方程,求出直線方程,解方程組求出交點坐標,代入曲線方程驗證點在曲線.本題考查了學生的運算求解能力.20、(1)單調遞減區(qū)間為,單調遞增區(qū)間為;(2)【解析】

(1)求導,根據(jù)導數(shù)與函數(shù)單調性關系即可求出.(2)解法一:分類討論:當時,觀察式子可得恒成立;當時,利用導數(shù)判斷函數(shù)為單調遞增,可知;當時,令,由,,根據(jù)零點存在性定理可得,進而可得在上,單調遞減,即不滿足題意;解法二:通過分離參數(shù)可知條件等價于恒成立,進而記,問題轉化為求在上的最小值問題,通過二次求導,結合洛比達法則計算可得結論.【詳解】(1)當,,,,令,解得,當時,,當時,,在上單調遞減,在上單調遞增.(2)解法一:當時,函數(shù),若時,此時對任意都有,所以恒成立;若時,對任意都有,,所以,所以在上為增函數(shù),所以,即時滿足題意;若時,令,則,所以在上單調遞增,,,可知,一定存在使得,且當時,,所以在上,單調遞減,從而有時,,不滿足題意;綜上可知,實數(shù)a的取值范圍為.解法二:當時,函數(shù),又當時,,對一切恒成立等價于恒成立,記,其中,則,令,則,在上單調遞增,,恒成立,從而在上單調遞增,,由洛比達法則可知,,,解得.實數(shù)a的取值范圍為.【點睛】本題考查利用導數(shù)研究函數(shù)的單調性與不等式恒成立問題,考查了分類與整合的解題思想,涉及分離參數(shù)法等技巧、涉及到洛比

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論