2025屆江西省新余第四中學、上高第二中學數學高三第一學期期末達標測試試題含解析_第1頁
2025屆江西省新余第四中學、上高第二中學數學高三第一學期期末達標測試試題含解析_第2頁
2025屆江西省新余第四中學、上高第二中學數學高三第一學期期末達標測試試題含解析_第3頁
2025屆江西省新余第四中學、上高第二中學數學高三第一學期期末達標測試試題含解析_第4頁
2025屆江西省新余第四中學、上高第二中學數學高三第一學期期末達標測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆江西省新余第四中學、上高第二中學數學高三第一學期期末達標測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.年某省將實行“”的新高考模式,即語文、數學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B. C. D.2.我國數學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數可以表示為兩個素數(即質數)的和”,如,.在不超過20的素數中,隨機選取兩個不同的數,其和等于20的概率是()A. B. C. D.以上都不對3.已知等差數列的公差為,前項和為,,,為某三角形的三邊長,且該三角形有一個內角為,若對任意的恒成立,則實數().A.6 B.5 C.4 D.34.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為()A.2 B.3 C.4 D.55.若復數(為虛數單位),則()A. B. C. D.6.已知函數(其中為自然對數的底數)有兩個零點,則實數的取值范圍是()A. B.C. D.7.一只螞蟻在邊長為的正三角形區(qū)域內隨機爬行,則在離三個頂點距離都大于的區(qū)域內的概率為()A. B. C. D.8.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.9.某個小區(qū)住戶共200戶,為調查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內用水量超過15m3的住戶的戶數為()A.10 B.50 C.60 D.14010.若,滿足約束條件,則的取值范圍為()A. B. C. D.11.已知函數是定義在R上的奇函數,且滿足,當時,(其中e是自然對數的底數),若,則實數a的值為()A. B.3 C. D.12.已知是函數圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為()A. B. C.0 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓柱的上下底面的中心分別為,過直線的平面截該圓柱所得的截面是面積為36的正方形,則該圓柱的體積為____14.已知數列滿足:,,若對任意的正整數均有,則實數的最大值是_____.15.已知全集,集合則_____.16.設復數滿足,其中是虛數單位,若是的共軛復數,則____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示的幾何體中,,四邊形為正方形,四邊形為梯形,,,,為中點.(1)證明:;(2)求二面角的余弦值.18.(12分)已知函數(),且只有一個零點.(1)求實數a的值;(2)若,且,證明:.19.(12分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大??;(2)求點到平面的距離.20.(12分)設數列是等比數列,,已知,(1)求數列的首項和公比;(2)求數列的通項公式.21.(12分)若不等式在時恒成立,則的取值范圍是__________.22.(10分)已知函數是自然對數的底數.(1)若,討論的單調性;(2)若有兩個極值點,求的取值范圍,并證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.2、A【解析】

首先確定不超過的素數的個數,根據古典概型概率求解方法計算可得結果.【詳解】不超過的素數有,,,,,,,,共個,從這個素數中任選個,有種可能;其中選取的兩個數,其和等于的有,,共種情況,故隨機選出兩個不同的數,其和等于的概率.故選:.【點睛】本題考查古典概型概率問題的求解,屬于基礎題.3、C【解析】

若對任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時的n即可.【詳解】由已知,,又三角形有一個內角為,所以,,解得或(舍),故,當時,取得最大值,所以.故選:C.【點睛】本題考查等差數列前n項和的最值問題,考查學生的計算能力,是一道基礎題.4、D【解析】試題分析:拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應用拋物線定義和拋物線上點的性質拋物線上的點到焦點的距離,考查學生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質在解題時經常用到,可以簡化運算.5、B【解析】

根據復數的除法法則計算,由共軛復數的概念寫出.【詳解】,,故選:B【點睛】本題主要考查了復數的除法計算,共軛復數的概念,屬于容易題.6、B【解析】

求出導函數,確定函數的單調性,確定函數的最值,根據零點存在定理可確定參數范圍.【詳解】,當時,,單調遞增,當時,,單調遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數有兩個零點,則,∴.故選:B.【點睛】本題考查函數的零點,考查用導數研究函數的最值,根據零點存在定理確定參數范圍.7、A【解析】

求出滿足條件的正的面積,再求出滿足條件的正內的點到頂點、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點到三個頂點、、的距離都大于的概率是.故選:A.【點睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應用,考查計算能力,屬于中等題.8、B【解析】

設,則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結果.【詳解】設,則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應用,屬于基礎題.9、C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內用水量超過15立方米的住戶戶數為,故選C10、B【解析】

根據約束條件作出可行域,找到使直線的截距取最值得點,相應坐標代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當直線經過點時,取得最小值-5;經過點時,取得最大值5,故.故選:B【點睛】本題考查根據線性規(guī)劃求范圍,屬于基礎題.11、B【解析】

根據題意,求得函數周期,利用周期性和函數值,即可求得.【詳解】由已知可知,,所以函數是一個以4為周期的周期函數,所以,解得,故選:B.【點睛】本題考查函數周期的求解,涉及對數運算,屬綜合基礎題.12、C【解析】

先畫出函數圖像和圓,可知,若設,則,所以,而要求的最小值,只要取得最大值,若設圓的圓心為,則,所以只要取得最小值,若設,則,然后構造函數,利用導數求其最小值即可.【詳解】記圓的圓心為,設,則,設,記,則,令,因為在上單調遞增,且,所以當時,;當時,,則在上單調遞減,在上單調遞增,所以,即,所以(當時等號成立).故選:C【點睛】此題考查的是兩個向量的數量積的最小值,利用了導數求解,考查了轉化思想和運算能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由軸截面是正方形,易求底面半徑和高,則圓柱的體積易求.【詳解】解:因為軸截面是正方形,且面積是36,所以圓柱的底面直徑和高都是6故答案為:【點睛】考查圓柱的軸截面和其體積的求法,是基礎題.14、2【解析】

根據遞推公式可考慮分析,再累加求出關于關于參數的關系,根據表達式的取值分析出,再用數學歸納法證明滿足條件即可.【詳解】因為,累加可得.若,注意到當時,,不滿足對任意的正整數均有.所以.當時,證明:對任意的正整數都有.當時,成立.假設當時結論成立,即,則,即結論對也成立.由數學歸納法可知,對任意的正整數都有.綜上可知,所求實數的最大值是2.故答案為:2【點睛】本題主要考查了根據數列的遞推公式求解參數最值的問題,需要根據遞推公式累加求解,同時注意結合參數的范圍問題進行分析.屬于難題.15、【解析】

根據補集的定義求解即可.【詳解】解:.故答案為.【點睛】本題主要考查了補集的運算,屬于基礎題.16、【解析】

由于,則.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)取的中點,結合三角形中位線和長度關系,為平行四邊形,進而得到,根據線面平行判定定理可證得結論;(2)以,,為,,軸建立空間直角坐標系,分別求得兩面的法向量,求得法向量夾角的余弦值;根據二面角為銳角確定最終二面角的余弦值;【詳解】(1)取的中點,連結,因為為中點,,,所以,,∴為平行四邊形,所以,又因為,所以;(2)由題及(1)易知,,兩兩垂直,所以以,,為,,軸建立空間直角坐標系,則,,,,,,易知面的法向量為設面的法向量為則可得所以,如圖可知二面角為銳角,所以余弦值為【點睛】本題考查立體幾何中直線與平面平行關系的證明、空間向量法求解二面角,正確求解法向量是解題的關鍵,屬于中檔題.18、(1)(2)證明見解析【解析】

(1)求導可得在上,在上,所以函數在時,取最小值,由函數只有一個零點,觀察可知則有,即可求得結果.(2)由(1)可知為最小值,則構造函數(),求導借助基本不等式可判斷為減函數,即可得,即則有,由已知可得,由,可知,因為時,為增函數,即可得證得結論.【詳解】(1)().因為,所以,令得,,且,,在上;在上;所以函數在時,取最小值,當最小值為0時,函數只有一個零點,易得,所以,解得.(2)由(1)得,函數,設(),則,設(),則,,所以為減函數,所以,即,所以,即,又,所以,又當時,為增函數,所以,即.【點睛】本題考查借助導數研究函數的單調性及最值,考查學生分析問題的能力,及邏輯推理能力,難度困難.19、(1);(2).【解析】

(1)建立空間坐標系,通過求向量與向量的夾角,轉化為異面直線與直線所成的角的大小;(2)先求出面的一個法向量,再用點到面的距離公式算出即可.【詳解】以為原點,所在直線分別為軸建系,設所以,,所以異面直線與直線所成的角的余弦值為,異面直線與直線所成的角的大小為.(2)因為,,設是面的一個法向量,所以有即,令,,故,又,所以點到平面的距離為.【點睛】本題主要考查向量法求異面直線所成角的大小和點到面的距離,意在考查學生的數學建模以及數學運算能力.20、(1)(2)【解析】

本題主要考查了等比數列的通項公式的求解,數列求和的錯位相減求和是數列求和中的重點與難點,要注意掌握.(1)設等比數列{an}的公比為q,則q+q2=6,解方程可求q(2)由(1)可求an=a1?qn-1=2n-1,結合數列的特點,考慮利用錯位相減可求數列的和解:(1)(2),兩式相減:21、【解析】

原不等式等價于在恒成立,令,,求出在上的最小值后可得的取值范圍.【詳解】因為在時恒成立,故在恒成立.令,由可得.令,,則為上的增函數,故.故.故答案為:.【點睛】本題考查含參數的不等式的恒成立,對于此類問題,優(yōu)先考慮參變分離,把恒成立問題轉化為不含參數的新函數的最值問題,本題屬于基礎題.22、(1)減區(qū)間是,增區(qū)間是;(2),證明見解析.【解析】

(1)當時,求得函數的導函數以及二階導函數,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論