山東省青島市黃島區(qū)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁
山東省青島市黃島區(qū)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁
山東省青島市黃島區(qū)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁
山東省青島市黃島區(qū)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁
山東省青島市黃島區(qū)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

山東省青島市黃島區(qū)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.桌面上有A、B兩球,若要將B球射向桌面任意一邊的黑點,則B球一次反彈后擊中A球的概率是()A. B. C. D.2.下列命題是真命題的是()A.一組對邊平行,另一組對邊相等的四邊形是平行四邊形B.兩條對角線相等的四邊形是平行四邊形C.兩組對邊分別相等的四邊形是平行四邊形D.平行四邊形既是中心對稱圖形,又是軸對稱圖形3.已知圓內(nèi)接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.4.如圖,PA、PB切⊙O于A、B兩點,AC是⊙O的直徑,∠P=40°,則∠ACB度數(shù)是()A.50° B.60° C.70° D.80°5.分式有意義,則x的取值范圍是()A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣76.下列命題中,真命題是()A.如果第一個圓上的點都在第二個圓的外部,那么這兩個圓外離B.如果一個點即在第一個圓上,又在第二個圓上,那么這兩個圓外切C.如果一條直線上的點到圓心的距離等于半徑長,那么這條直線與這個圓相切D.如果一條直線上的點都在一個圓的外部,那么這條直線與這個圓相離7.如圖,OP平分∠AOB,PC⊥OA于C,點D是OB上的動點,若PC=6cm,則PD的長可以是()A.7cm B.4cm C.5cm D.3cm8.如圖,將邊長為2cm的正方形OABC放在平面直角坐標(biāo)系中,O是原點,點A的橫坐標(biāo)為1,則點C的坐標(biāo)為()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)9.如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B的長為()A. B. C. D.110.如果邊長相等的正五邊形和正方形的一邊重合,那么∠1的度數(shù)是()A.30° B.15° C.18° D.20°11.若關(guān)于x的一元一次不等式組無解,則a的取值范圍是()A.a(chǎn)≥3 B.a(chǎn)>3 C.a(chǎn)≤3 D.a(chǎn)<312.已知點P(a,m),Q(b,n)都在反比例函數(shù)y=的圖象上,且a<0<b,則下列結(jié)論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n二、填空題:(本大題共6個小題,每小題4分,共24分.)13.填在下列各圖形中的三個數(shù)之間都有相同的規(guī)律,根據(jù)此規(guī)律,a的值是____.14.已知拋物線開口向上且經(jīng)過點,雙曲線經(jīng)過點,給出下列結(jié)論:;;,c是關(guān)于x的一元二次方程的兩個實數(shù)根;其中正確結(jié)論是______填寫序號15.圖中是兩個全等的正五邊形,則∠α=______.16.如圖,點P的坐標(biāo)為(2,2),點A,B分別在x軸,y軸的正半軸上運動,且∠APB=90°.下列結(jié)論:①PA=PB;②當(dāng)OA=OB時四邊形OAPB是正方形;③四邊形OAPB的面積和周長都是定值;④連接OP,AB,則AB>OP.其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號都填上)17.如圖,每個小正方形的邊長為1,A、B、C是小正方形的頂點,則∠ABC的正弦值為__.18.有一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,則a=_____,這組數(shù)據(jù)的方差是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖(1),AB=CD,AD=BC,O為AC中點,過O點的直線分別與AD、BC相交于點M、N,那么∠1與∠2有什么關(guān)系?請說明理由;若過O點的直線旋轉(zhuǎn)至圖(2)、(3)的情況,其余條件不變,那么圖(1)中的∠1與∠2的關(guān)系成立嗎?請說明理由.20.(6分)已知:如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△OAB的頂點A、B的坐標(biāo)分別是A(0,5),B(3,1),過點B畫BC⊥AB交直線y=-m(m>54)于點C,連結(jié)AC,以點A為圓心,AC為半徑畫弧交x軸負(fù)半軸于點D,連結(jié)AD(1)求證:△ABC≌△AOD.(2)設(shè)△ACD的面積為s,求s關(guān)于m的函數(shù)關(guān)系式.(3)若四邊形ABCD恰有一組對邊平行,求m的值.21.(6分)拋一枚質(zhì)地均勻六面分別刻有1、2、3、4、5、6點的正方體骰子兩次,若記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b,則以方程組的解為坐標(biāo)的點在第四象限的概率為_____.22.(8分)“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).請根據(jù)以上信息回答:(1)本次參加抽樣調(diào)查的居民有多少人?(2)將兩幅不完整的圖補充完整;(3)求扇形統(tǒng)計圖中C所對圓心角的度數(shù);(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.23.(8分)先化簡,再求值:,其中x為方程的根.24.(10分)如圖1,正方形ABCD的邊長為8,動點E從點D出發(fā),在線段DC上運動,同時點F從點B出發(fā),以相同的速度沿射線AB方向運動,當(dāng)點E運動到終點C時,點F也停止運動,連接AE交對角線BD于點N,連接EF交BC于點M,連接AM.(參考數(shù)據(jù):sin15°=,cos15°=,tan15°=2﹣)(1)在點E、F運動過程中,判斷EF與BD的位置關(guān)系,并說明理由;(2)在點E、F運動過程中,①判斷AE與AM的數(shù)量關(guān)系,并說明理由;②△AEM能為等邊三角形嗎?若能,求出DE的長度;若不能,請說明理由;(3)如圖2,連接NF,在點E、F運動過程中,△ANF的面積是否變化,若不變,求出它的面積;若變化,請說明理由.25.(10分)請根據(jù)圖中提供的信息,回答下列問題:一個水瓶與一個水杯分別是多少元?甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數(shù))個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)26.(12分)某公司今年1月份的生產(chǎn)成本是400萬元,由于改進技術(shù),生產(chǎn)成本逐月下降,3月份的生產(chǎn)成本是361萬元.假設(shè)該公司2、3、4月每個月生產(chǎn)成本的下降率都相同.求每個月生產(chǎn)成本的下降率;請你預(yù)測4月份該公司的生產(chǎn)成本.27.(12分)如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.(1)求y與x之間的函數(shù)關(guān)系式;(2)直接寫出當(dāng)x>0時,不等式x+b>的解集;(3)若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標(biāo).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題解析:由圖可知可以瞄準(zhǔn)的點有2個..∴B球一次反彈后擊中A球的概率是.故選B.2、C【解析】

根據(jù)平行四邊形的五種判定定理(平行四邊形的判定方法:①兩組對邊分別平行的四邊形;②兩組對角分別相等的四邊形;③兩組對邊分別相等的四邊形;④一組對邊平行且相等的四邊形;⑤對角線互相平分的四邊形)和平行四邊形的性質(zhì)進行判斷.【詳解】A、一組對邊平行,另一組對邊相等的四邊形不是平行四邊形;故本選項錯誤;B、兩條對角線互相平分的四邊形是平行四邊形.故本選項錯誤;C、兩組對邊分別相等的四邊形是平行四邊形.故本選項正確;D、平行四邊形不是軸對稱圖形,是中心對稱圖形.故本選項錯誤;故選:C.【點睛】考查了平行四邊形的判定與性質(zhì).平行四邊形的判定方法共有五種,應(yīng)用時要認(rèn)真領(lǐng)會它們之間的聯(lián)系與區(qū)別,同時要根據(jù)條件合理、靈活地選擇方法.3、B【解析】

根據(jù)題意畫出圖形,連接AO并延長交BC于點D,則AD⊥BC,設(shè)OD=x,由三角形重心的性質(zhì)得AD=3x,利用銳角三角函數(shù)表示出BD的長,由垂徑定理表示出BC的長,然后根據(jù)面積法解答即可.【詳解】如圖,連接AO并延長交BC于點D,則AD⊥BC,設(shè)OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內(nèi)接正三邊形的邊心距為1,故選B.【點睛】本題考查正多邊形和圓,三角形重心的性質(zhì),垂徑定理,銳角三角函數(shù),面積法求線段的長,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的圖形的邊心距.4、C【解析】

連接BC,根據(jù)題意PA,PB是圓的切線以及可得的度數(shù),然后根據(jù),可得的度數(shù),因為是圓的直徑,所以,根據(jù)三角形內(nèi)角和即可求出的度數(shù)。【詳解】連接BC.∵PA,PB是圓的切線∴在四邊形中,∵∴∵所以∵是直徑∴∴故答案選C.【點睛】本題主要考察切線的性質(zhì),四邊形和三角形的內(nèi)角和以及圓周角定理。5、A【解析】

直接利用分式有意義則分母不為零進而得出答案.【詳解】解:分式有意義,則x﹣1≠0,解得:x≠1.故選:A.【點睛】此題主要考查了分式有意義的條件,正確把握分式的定義是解題關(guān)鍵.當(dāng)分母不等于零時,分式有意義;當(dāng)分母等于零時,分式無意義.分式是否有意義與分子的取值無關(guān).6、D【解析】

根據(jù)兩圓的位置關(guān)系、直線和圓的位置關(guān)系判斷即可.【詳解】A.如果第一個圓上的點都在第二個圓的外部,那么這兩個圓外離或內(nèi)含,A是假命題;B.如果一個點即在第一個圓上,又在第二個圓上,那么這兩個圓外切或內(nèi)切或相交,B是假命題;C.如果一條直線上的點到圓心的距離等于半徑長,那么這條直線與這個圓相切或相交,C是假命題;D.如果一條直線上的點都在一個圓的外部,那么這條直線與這個圓相離,D是真命題;故選:D.【點睛】本題考查了兩圓的位置關(guān)系:設(shè)兩圓半徑分別為R、r,兩圓圓心距為d,則當(dāng)d>R+r時兩圓外離;當(dāng)d=R+r時兩圓外切;當(dāng)R-r<d<R+r(R≥r)時兩圓相交;當(dāng)d=R-r(R>r)時兩圓內(nèi)切;當(dāng)0≤d<R-r(R>r)時兩圓內(nèi)含.7、A【解析】

過點P作PD⊥OB于D,根據(jù)角平分線上的點到角的兩邊距離相等可得PC=PD,再根據(jù)垂線段最短解答即可.【詳解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,則PD的最小值是6cm,故選A.【點睛】考查了角平分線上的點到角的兩邊距離相等的性質(zhì),垂線段最短的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.8、A【解析】

作AD⊥y軸于D,作CE⊥y軸于E,則∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性質(zhì)得出OC=AO,∠1+∠3=90°,證出∠3=∠1,由AAS證明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出結(jié)果.【詳解】解:作AD⊥y軸于D,作CE⊥y軸于E,如圖所示:則∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴點A的坐標(biāo)為(1,),∴AD=1,OD=.∵四邊形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴點C的坐標(biāo)為(,﹣1).故選A.【點睛】本題考查了正方形的性質(zhì)、坐標(biāo)與圖形性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等得出對應(yīng)邊相等是解決問題的關(guān)鍵.9、C【解析】

延長BC′交AB′于D,根據(jù)等邊三角形的性質(zhì)可得BD⊥AB′,利用勾股定理列式求出AB,然后根據(jù)等邊三角形的性質(zhì)和等腰直角三角形的性質(zhì)求出BD、C′D,然后根據(jù)BC′=BD-C′D計算即可得解.【詳解】解:延長BC′交AB′于D,連接BB',如圖,在Rt△AC′B′中,AB′=AC′=2,∵BC′垂直平分AB′,∴C′D=AB=1,∵BD為等邊三角形△ABB′的高,∴BD=AB′=,∴BC′=BD-C′D=-1.故本題選擇C.【點睛】熟練掌握勾股定理以及由旋轉(zhuǎn)60°得到△ABB′是等邊三角形是解本題的關(guān)鍵.10、C【解析】

∠1的度數(shù)是正五邊形的內(nèi)角與正方形的內(nèi)角的度數(shù)的差,根據(jù)多邊形的內(nèi)角和定理求得角的度數(shù),進而求解.【詳解】∵正五邊形的內(nèi)角的度數(shù)是×(5-2)×180°=108°,正方形的內(nèi)角是90°,

∴∠1=108°-90°=18°.故選C【點睛】本題考查了多邊形的內(nèi)角和定理、正五邊形和正方形的性質(zhì),求得正五邊形的內(nèi)角的度數(shù)是關(guān)鍵.11、A【解析】

先求出各不等式的解集,再與已知解集相比較求出a的取值范圍.【詳解】由x﹣a>0得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式組的解集是空集,∴a≥1.故選:A.【點睛】考查的是解一元一次不等式組,熟知“同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到”的原則是解答此題的關(guān)鍵.12、D【解析】

根據(jù)反比例函數(shù)的性質(zhì),可得答案.【詳解】∵y=?的k=-2<1,圖象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正確;故選D.【點睛】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<1時,圖象位于二四象限是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】尋找規(guī)律:上面是1,2,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:從第二個圖形開始,左下數(shù)字減上面數(shù)字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=1.14、①③【解析】試題解析:∵拋物線開口向上且經(jīng)過點(1,1),雙曲線經(jīng)過點(a,bc),∴,∴bc>0,故①正確;∴a>1時,則b、c均小于0,此時b+c<0,當(dāng)a=1時,b+c=0,則與題意矛盾,當(dāng)0<a<1時,則b、c均大于0,此時b+c>0,故②錯誤;∴可以轉(zhuǎn)化為:,得x=b或x=c,故③正確;∵b,c是關(guān)于x的一元二次方程的兩個實數(shù)根,∴a﹣b﹣c=a﹣(b+c)=a+(a﹣1)=2a﹣1,當(dāng)a>1時,2a﹣1>3,當(dāng)0<a<1時,﹣1<2a﹣1<3,故④錯誤;故答案為①③.15、108°【解析】

先求出正五邊形各個內(nèi)角的度數(shù),再求出∠BCD和∠BDC的度數(shù),求出∠CBD,即可求出答案.【詳解】如圖:∵圖中是兩個全等的正五邊形,∴BC=BD,∴∠BCD=∠BDC,∵圖中是兩個全等的正五邊形,∴正五邊形每個內(nèi)角的度數(shù)是=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案為108°.【點睛】本題考查了正多邊形和多邊形的內(nèi)角和外角,能求出各個角的度數(shù)是解此題的關(guān)鍵.16、①②【解析】

過P作PM⊥y軸于M,PN⊥x軸于N,得出四邊形PMON是正方形,推出OM=OM=ON=PN=1,證△APM≌△BPN,可對①進行判斷,推出AM=BN,求出OA+OB=ON+OM=2,當(dāng)當(dāng)OA=OB時,OA=OB=1,然后可對②作出判斷,由△APM≌△BPN可對四邊形OAPB的面積作出判斷,由OA+OB=2,然后依據(jù)AP和PB的長度變化情況可對四邊形OAPB的周長作出判斷,求得AB的最大值以及OP的長度可對④作出判斷.【詳解】過P作PM⊥y軸于M,PN⊥x軸于N

∵P(1,1),

∴PN=PM=1.

∵x軸⊥y軸,

∴∠MON=∠PNO=∠PMO=90°,

∴∠MPN=360°-90°-90°-90°=90°,則四邊形MONP是正方形,

∴OM=ON=PN=PM=1,

∵∠MPA=∠APB=90°,

∴∠MPA=∠NPB.

∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,

∴△MPA≌△NPB,

∴PA=PB,故①正確.

∵△MPA≌△NPB,

∴AM=BN,

∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.

當(dāng)OA=OB時,OA=OB=1,則點A、B分別與點M、N重合,此時四邊形OAPB是正方形,故②正確.

∵△MPA≌△NPB,

∴四邊形OAPB的面積=四邊形AONP的面積+△PNB的面積=四邊形AONP的面積+△PMA的面積=正方形PMON的面積=2.

∵OA+OB=2,PA=PB,且PA和PB的長度會不斷的變化,故周長不是定值,故③錯誤.

,∵∠AOB+∠APB=180°,

∴點A、O、B、P共圓,且AB為直徑,所以

AB≥OP,故④錯誤.

故答案為:①②.【點睛】本題考查了全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,坐標(biāo)與圖形性質(zhì),正方形的性質(zhì)的應(yīng)用,關(guān)鍵是推出AM=BN和推出OA+OB=OM+ON17、【解析】

首先利用勾股定理計算出AB2,BC2,AC2,再根據(jù)勾股定理逆定理可證明∠BCA=90°,然后得到∠ABC的度數(shù),再利用特殊角的三角函數(shù)可得∠ABC的正弦值.【詳解】解:連接ACAB2=32+12=10,BC2=22+12=5,AC2=22+12=5,∴AC=CB,BC2+AC2=AB2,∴∠BCA=90°,∴∠ABC=45°,∴∠ABC的正弦值為.故答案為:.【點睛】此題主要考查了銳角三角函數(shù),以及勾股定理逆定理,關(guān)鍵是掌握特殊角的三角函數(shù).18、51.【解析】∵一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,∴,解得,,∴=1.故答案為5,1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、詳見解析.【解析】

(1)根據(jù)全等三角形判定中的“SSS”可得出△ADC≌△CBA,由全等的性質(zhì)得∠DAC=∠BCA,可證AD∥BC,根據(jù)平行線的性質(zhì)得出∠1=∠1;(1)(3)和(1)的證法完全一樣.先證△ADC≌△CBA得到∠DAC=∠BCA,則DA∥BC,從而∠1=∠1.【詳解】證明:∠1與∠1相等.在△ADC與△CBA中,,∴△ADC≌△CBA.(SSS)∴∠DAC=∠BCA.∴DA∥BC.∴∠1=∠1.②③圖形同理可證,△ADC≌△CBA得到∠DAC=∠BCA,則DA∥BC,∠1=∠1.20、(1)證明詳見解析;(2)S=56(m+1)2+152(m>【解析】試題分析:(1)利用兩點間的距離公式計算出AB=5,則AB=OA,則可根據(jù)“HL”證明△ABC≌△AOD;(2)過點B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,證明Rt△ABF∽Rt△BCE,利用相似比可得BC=53(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+259(m+1)2,然后證明△AOB∽△ACD,利用相似的性質(zhì)得S△AOBS△ACD=(ABAC)2,而S△AOB(2)作BH⊥y軸于H,如圖,分類討論:當(dāng)AB∥CD時,則∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函數(shù)得到tan∠AOB=2,tan∠ACB=ABBC=3m+1,所以3m+1=2;當(dāng)AD∥BC,則∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,則∠ACB=∠4,根據(jù)三角函數(shù)定義得到tan∠4=34,tan∠ACB=試題解析:(1)證明:∵A(0,5),B(2,1),∴AB=32∴AB=OA,∵AB⊥BC,∴∠ABC=90°,在Rt△ABC和Rt△AOD中,AB=AOAC=AD∴Rt△ABC≌Rt△AOD;(2)解:過點B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,∵∠1+∠2=90°,∠1+∠2=90°,∴∠2=∠2,∴Rt△ABF∽Rt△BCE,∴ABBC=AF∴BC=53在Rt△ACB中,AC2=AB2+BC2=25+259(m+1)2∵△ABC≌△AOD,∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,∴∠4=∠5,而AO=AB,AD=AC,∴△AOB∽△ACD,∴S△AOBS△ACD而S△AOB=12×5×2=15∴S=56(m+1)2+152(m>(2)作BH⊥y軸于H,如圖,當(dāng)AB∥CD時,則∠ACD=∠CAB,而△AOB∽△ACD,∴∠ACD=∠AOB,∴∠CAB=∠AOB,而tan∠AOB=BHOH=2,tan∠ACB=ABBC=55∴3m+1當(dāng)AD∥BC,則∠5=∠ACB,而△AOB∽△ACD,∴∠4=∠5,∴∠ACB=∠4,而tan∠4=BHAH=3∴3m+1=3解得m=2.綜上所述,m的值為2或1.考點:相似形綜合題.21、【解析】

解方程組,根據(jù)條件確定a、b的范圍,從而確定滿足該條件的結(jié)果個數(shù),利用古典概率的概率公式求出方程組只有一個解的概率.【詳解】∵,得若b>2a,即a=2,3,4,5,6

b=4,5,6符合條件的數(shù)組有(2,5)(2,6)共有2個,若b<2a,符合條件的數(shù)組有(1,1)共有1個,∴概率p=.故答案為:.【點睛】本題主要考查了古典概率及其概率計算公式的應(yīng)用.22、(1)本次參加抽樣調(diào)查的居民有600人;(2)補圖見解析;(3)72°;(4).【解析】試題分析:(1)用B的頻數(shù)除以B所占的百分比即可求得結(jié)論;(2)分別求得C的頻數(shù)及其所占的百分比即可補全統(tǒng)計圖;(3)算出A的所占的百分比,再進一步算出C所占的百分比,再扇形統(tǒng)計圖中C所對圓心角的度數(shù);(4)列出樹形圖即可求得結(jié)論.試題解析:(1)60÷10%=600(人).答:本次參加抽樣調(diào)查的居民有600人.(2)如圖;(3),360°×(1-10%-30%-40%)=72°.(4)如圖;(列表方法略,參照給分).P(C粽)=.答:他第二個吃到的恰好是C粽的概率是.考點:1.條形統(tǒng)計圖;2.用樣本估計總體;3.扇形統(tǒng)計圖;4.列表法與樹狀圖法.23、1【解析】

先將除式括號里面的通分后,將除法轉(zhuǎn)換成乘法,約分化簡.然后解一元二次方程,根據(jù)分式有意義的條件選擇合適的x值,代入求值.【詳解】解:原式=.解得,,∵時,無意義,∴取.當(dāng)時,原式=.24、(1)EF∥BD,見解析;(2)①AE=AM,理由見解析;②△AEM能為等邊三角形,理由見解析;(3)△ANF的面積不變,理由見解析【解析】

(1)依據(jù)DE=BF,DE∥BF,可得到四邊形DBFE是平行四邊形,進而得出EF∥DB;(2)依據(jù)已知條件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等邊三角形,則∠EAM=60°,依據(jù)△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即當(dāng)DE=16?8時,△AEM是等邊三角形;(3)設(shè)DE=x,過點N作NP⊥AB,反向延長PN交CD于點Q,則NQ⊥CD,依據(jù)△DEN∽△BNA,即可得出PN=,根據(jù)S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面積不變.【詳解】解:(1)EF∥BD.證明:∵動點E從點D出發(fā),在線段DC上運動,同時點F從點B出發(fā),以相同的速度沿射線AB方向運動,∴DE=BF,又∵DE∥BF,∴四邊形DBFE是平行四邊形,∴EF∥DB;(2)①AE=AM.∵EF∥BD,∴∠F=∠ABD=45°,∴MB=BF=DE,∵正方形ABCD,∴∠ADC=∠ABC=90°,AB=AD,∴△ADE≌△ABM,∴AE=AM;②△AEM能為等邊三角形.若△AEM是等邊三角形,則∠EAM=60°,∵△ADE≌△ABM,∴∠DAE=∠BAM=15°,∵tan∠DAE=,AD=8,∴2﹣=,∴DE=16﹣8,即當(dāng)DE=16﹣8時,△AEM是等邊三角形;(3)△ANF的面積不變.設(shè)DE=x,過點N作NP⊥AB,反向延長PN交CD于點Q,則NQ⊥CD,∵CD∥AB,∴△DEN∽△BNA,∴=,∴,∴PN=,∴S△ANF=AF×PN=×(x+8)×=32,即△ANF的面積不變.【點睛】本題屬于四邊形綜合題,主要考查了平行四邊形的判定與性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),解直角三角形以及相似三角形的判定與性質(zhì)的綜合運用,解決問題的關(guān)鍵是作輔助線構(gòu)造相似三角形,利用全等三角形的對應(yīng)邊相等,相似三角形的對應(yīng)邊成比例得出結(jié)論.25、(1)一個水瓶40元,一個水杯是8元;(2)當(dāng)10<n<25時,選擇乙商場購買更合算.當(dāng)n>25時,選擇甲商場購買更合算.【解析】

(1)設(shè)一個水瓶x元,表示出一個水杯為(48﹣x)元,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果;(2)計算出兩商場得費用,比較即可得到結(jié)果.【詳解】解:(1)設(shè)一個水瓶x元,表示出一個水杯為(48﹣x)元,根據(jù)題意得:3x+4(48﹣x)=152,解得:x=40,則一個水瓶40元,一個水杯是8元

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論