2023-2024學(xué)年江蘇省南通市天星湖中學(xué)高三年級(jí)第二學(xué)期聯(lián)合調(diào)研數(shù)學(xué)試題_第1頁(yè)
2023-2024學(xué)年江蘇省南通市天星湖中學(xué)高三年級(jí)第二學(xué)期聯(lián)合調(diào)研數(shù)學(xué)試題_第2頁(yè)
2023-2024學(xué)年江蘇省南通市天星湖中學(xué)高三年級(jí)第二學(xué)期聯(lián)合調(diào)研數(shù)學(xué)試題_第3頁(yè)
2023-2024學(xué)年江蘇省南通市天星湖中學(xué)高三年級(jí)第二學(xué)期聯(lián)合調(diào)研數(shù)學(xué)試題_第4頁(yè)
2023-2024學(xué)年江蘇省南通市天星湖中學(xué)高三年級(jí)第二學(xué)期聯(lián)合調(diào)研數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年江蘇省南通市天星湖中學(xué)高三年級(jí)第二學(xué)期聯(lián)合調(diào)研數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的一個(gè)零點(diǎn)在區(qū)間內(nèi),則實(shí)數(shù)a的取值范圍是()A. B. C. D.2.某幾何體的三視圖如圖所示,三視圖是腰長(zhǎng)為1的等腰直角三角形和邊長(zhǎng)為1的正方形,則該幾何體中最長(zhǎng)的棱長(zhǎng)為().A. B. C.1 D.3.曲線上任意一點(diǎn)處的切線斜率的最小值為()A.3 B.2 C. D.14.已知直線過(guò)雙曲線C:的左焦點(diǎn)F,且與雙曲線C在第二象限交于點(diǎn)A,若(O為坐標(biāo)原點(diǎn)),則雙曲線C的離心率為A. B. C. D.5.定義運(yùn)算,則函數(shù)的圖象是().A. B.C. D.6.如圖所示的“數(shù)字塔”有以下規(guī)律:每一層最左與最右的數(shù)字均為2,除此之外每個(gè)數(shù)字均為其兩肩的數(shù)字之積,則該“數(shù)字塔”前10層的所有數(shù)字之積最接近()A. B. C. D.7.已知將函數(shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,若和的圖象都關(guān)于對(duì)稱,則下述四個(gè)結(jié)論:①②③④點(diǎn)為函數(shù)的一個(gè)對(duì)稱中心其中所有正確結(jié)論的編號(hào)是()A.①②③ B.①③④ C.①②④ D.②③④8.要排出高三某班一天中,語(yǔ)文、數(shù)學(xué)、英語(yǔ)各節(jié),自習(xí)課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語(yǔ)文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是()A. B. C. D.9.如圖是甲、乙兩位同學(xué)在六次數(shù)學(xué)小測(cè)試(滿分100分)中得分情況的莖葉圖,則下列說(shuō)法錯(cuò)誤的是()A.甲得分的平均數(shù)比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數(shù)和乙相等10.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a11.若復(fù)數(shù)滿足,則()A. B. C. D.12.已知某批零件的長(zhǎng)度誤差(單位:毫米)服從正態(tài)分布,從中隨機(jī)取一件,其長(zhǎng)度誤差落在區(qū)間(3,6)內(nèi)的概率為()(附:若隨機(jī)變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%二、填空題:本題共4小題,每小題5分,共20分。13.某市高三理科學(xué)生有名,在一次調(diào)研測(cè)試中,數(shù)學(xué)成績(jī)服從正態(tài)分布,已知,若按成績(jī)分層抽樣的方式取份試卷進(jìn)行分析,則應(yīng)從分以上的試卷中抽取的份數(shù)為_(kāi)_________.14.若實(shí)數(shù)x,y滿足不等式組x+y-4≤0,2x-3y-8≤0,x≥1,則目標(biāo)函數(shù)15.函數(shù)與的圖象上存在關(guān)于軸的對(duì)稱點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)_____.16.已知關(guān)于空間兩條不同直線m、n,兩個(gè)不同平面、,有下列四個(gè)命題:①若且,則;②若且,則;③若且,則;④若,且,則.其中正確命題的序號(hào)為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)2018年反映社會(huì)現(xiàn)實(shí)的電影《我不是藥神》引起了很大的轟動(dòng),治療特種病的創(chuàng)新藥研發(fā)成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場(chǎng)上治療一類慢性病的特效藥品的研發(fā)費(fèi)用(百萬(wàn)元)和銷量(萬(wàn)盒)的統(tǒng)計(jì)數(shù)據(jù)如下:研發(fā)費(fèi)用(百萬(wàn)元)2361013151821銷量(萬(wàn)盒)1122.53.53.54.56(1)求與的相關(guān)系數(shù)精確到0.01,并判斷與的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:時(shí),可用線性回歸方程模型擬合);(2)該藥企準(zhǔn)備生產(chǎn)藥品的三類不同的劑型,,,并對(duì)其進(jìn)行兩次檢測(cè),當(dāng)?shù)谝淮螜z測(cè)合格后,才能進(jìn)行第二次檢測(cè).第一次檢測(cè)時(shí),三類劑型,,合格的概率分別為,,,第二次檢測(cè)時(shí),三類劑型,,合格的概率分別為,,.兩次檢測(cè)過(guò)程相互獨(dú)立,設(shè)經(jīng)過(guò)兩次檢測(cè)后,,三類劑型合格的種類數(shù)為,求的數(shù)學(xué)期望.附:(1)相關(guān)系數(shù)(2),,,.18.(12分)為了解廣大學(xué)生家長(zhǎng)對(duì)校園食品安全的認(rèn)識(shí),某市食品安全檢測(cè)部門對(duì)該市家長(zhǎng)進(jìn)行了一次校園食品安全網(wǎng)絡(luò)知識(shí)問(wèn)卷調(diào)查,每一位學(xué)生家長(zhǎng)僅有一次參加機(jī)會(huì),現(xiàn)對(duì)有效問(wèn)卷進(jìn)行整理,并隨機(jī)抽取出了200份答卷,統(tǒng)計(jì)這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認(rèn)為,此次問(wèn)卷調(diào)查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表).(1)請(qǐng)利用正態(tài)分布的知識(shí)求;(2)該市食品安全檢測(cè)部門為此次參加問(wèn)卷調(diào)查的學(xué)生家長(zhǎng)制定如下獎(jiǎng)勵(lì)方案:①得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi):②每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:獲贈(zèng)的隨機(jī)話費(fèi)(單位:元)概率市食品安全檢測(cè)部門預(yù)計(jì)參加此次活動(dòng)的家長(zhǎng)約5000人,請(qǐng)依據(jù)以上數(shù)據(jù)估計(jì)此次活動(dòng)可能贈(zèng)送出多少話費(fèi)?附:①;②若;則,,.19.(12分)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為.(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)設(shè)點(diǎn),直線l與曲線C交于不同的兩點(diǎn)A、B,求的值.20.(12分)某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗(yàn)1000人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)1000次.方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)次);否則,若呈陽(yáng)性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這樣,該組個(gè)人的血總共需要化驗(yàn)次.假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.(1)設(shè)方案②中,某組個(gè)人的每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;(2)設(shè),試比較方案②中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))21.(12分)如圖所示,在三棱錐中,,,,點(diǎn)為中點(diǎn).(1)求證:平面平面;(2)若點(diǎn)為中點(diǎn),求平面與平面所成銳二面角的余弦值.22.(10分)的內(nèi)角,,的對(duì)邊分別為,,已知,.(1)求;(2)若的面積,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

顯然函數(shù)在區(qū)間內(nèi)連續(xù),由的一個(gè)零點(diǎn)在區(qū)間內(nèi),則,即可求解.【詳解】由題,顯然函數(shù)在區(qū)間內(nèi)連續(xù),因?yàn)榈囊粋€(gè)零點(diǎn)在區(qū)間內(nèi),所以,即,解得,故選:C【點(diǎn)睛】本題考查零點(diǎn)存在性定理的應(yīng)用,屬于基礎(chǔ)題.2.B【解析】

首先由三視圖還原幾何體,進(jìn)一步求出幾何體的棱長(zhǎng).【詳解】解:根據(jù)三視圖還原幾何體如圖所示,所以,該四棱錐體的最長(zhǎng)的棱長(zhǎng)為.故選:B.【點(diǎn)睛】本題主要考查由三視圖還原幾何體,考查運(yùn)算能力和推理能力,屬于基礎(chǔ)題.3.A【解析】

根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線斜率,當(dāng)且僅當(dāng)?shù)忍?hào)成立,所以上任意一點(diǎn)處的切線斜率的最小值為3.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運(yùn)用基本不等式求最值,考查計(jì)算能力.4.B【解析】

直線的傾斜角為,易得.設(shè)雙曲線C的右焦點(diǎn)為E,可得中,,則,所以雙曲線C的離心率為.故選B.5.A【解析】

由已知新運(yùn)算的意義就是取得中的最小值,因此函數(shù),只有選項(xiàng)中的圖象符合要求,故選A.6.A【解析】

結(jié)合所給數(shù)字特征,我們可將每層數(shù)字表示成2的指數(shù)的形式,觀察可知,每層指數(shù)的和成等比數(shù)列分布,結(jié)合等比數(shù)列前項(xiàng)和公式和對(duì)數(shù)恒等式即可求解【詳解】如圖,將數(shù)字塔中的數(shù)寫成指數(shù)形式,可發(fā)現(xiàn)其指數(shù)恰好構(gòu)成“楊輝三角”,前10層的指數(shù)之和為,所以原數(shù)字塔中前10層所有數(shù)字之積為.故選:A【點(diǎn)睛】本題考查與“楊輝三角”有關(guān)的規(guī)律求解問(wèn)題,邏輯推理,等比數(shù)列前項(xiàng)和公式應(yīng)用,屬于中檔題7.B【解析】

首先根據(jù)三角函數(shù)的平移規(guī)則表示出,再根據(jù)對(duì)稱性求出、,即可求出的解析式,從而驗(yàn)證可得;【詳解】解:由題意可得,又∵和的圖象都關(guān)于對(duì)稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯(cuò)誤.故選:B【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)的應(yīng)用,三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.8.C【解析】

根據(jù)題意,分兩種情況進(jìn)行討論:①語(yǔ)文和數(shù)學(xué)都安排在上午;②語(yǔ)文和數(shù)學(xué)一個(gè)安排在上午,一個(gè)安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計(jì)數(shù)原理可得答案.【詳解】根據(jù)題意,分兩種情況進(jìn)行討論:①語(yǔ)文和數(shù)學(xué)都安排在上午,要求節(jié)語(yǔ)文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰,將節(jié)語(yǔ)文課和節(jié)數(shù)學(xué)課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語(yǔ)課不加以區(qū)分,此時(shí),排法種數(shù)為種;②語(yǔ)文和數(shù)學(xué)都一個(gè)安排在上午,一個(gè)安排在下午.語(yǔ)文和數(shù)學(xué)一個(gè)安排在上午,一個(gè)安排在下午,但節(jié)語(yǔ)文課不加以區(qū)分,節(jié)數(shù)學(xué)課不加以區(qū)分,節(jié)英語(yǔ)課也不加以區(qū)分,此時(shí),排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C.【點(diǎn)睛】本題考查排列、組合的應(yīng)用,涉及分類計(jì)數(shù)原理的應(yīng)用,屬于中等題.9.B【解析】

由平均數(shù)、方差公式和極差、中位數(shù)概念,可得所求結(jié)論.【詳解】對(duì)于甲,;對(duì)于乙,,故正確;甲的極差為,乙的極差為,故錯(cuò)誤;對(duì)于甲,方差.5,對(duì)于乙,方差,故正確;甲得分的中位數(shù)為,乙得分的中位數(shù)為,故正確.故選:.【點(diǎn)睛】本題考查莖葉圖的應(yīng)用,考查平均數(shù)和方差等概念,培養(yǎng)計(jì)算能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.10.C【解析】

兩復(fù)數(shù)相等,實(shí)部與虛部對(duì)應(yīng)相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的概念,屬于基礎(chǔ)題.11.C【解析】

化簡(jiǎn)得到,,再計(jì)算復(fù)數(shù)模得到答案.【詳解】,故,故,.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的化簡(jiǎn),共軛復(fù)數(shù),復(fù)數(shù)模,意在考查學(xué)生的計(jì)算能力.12.B【解析】試題分析:由題意故選B.考點(diǎn):正態(tài)分布二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意結(jié)合正態(tài)分布曲線可得分以上的概率,乘以可得.【詳解】解:,所以應(yīng)從分以上的試卷中抽取份.故答案為:.【點(diǎn)睛】本題考查正態(tài)分布曲線,屬于基礎(chǔ)題.14.12【解析】

畫出約束條件的可行域,求出最優(yōu)解,即可求解目標(biāo)函數(shù)的最大值.【詳解】根據(jù)約束條件畫出可行域,如下圖,由x+y-4=02x-3y-8=0,解得目標(biāo)函數(shù)y=3x-z,當(dāng)y=3x-z過(guò)點(diǎn)(4,0)時(shí),z有最大值,且最大值為12.故答案為:12.【點(diǎn)睛】本題考查線性規(guī)劃的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.15.【解析】

先求得與關(guān)于軸對(duì)稱的函數(shù),將問(wèn)題轉(zhuǎn)化為與的圖象有交點(diǎn),即方程有解.對(duì)分成三種情況進(jìn)行分類討論,由此求得實(shí)數(shù)的取值范圍.【詳解】因?yàn)殛P(guān)于軸對(duì)稱的函數(shù)為,因?yàn)楹瘮?shù)與的圖象上存在關(guān)于軸的對(duì)稱點(diǎn),所以與的圖象有交點(diǎn),方程有解.時(shí)符合題意.時(shí)轉(zhuǎn)化為有解,即,的圖象有交點(diǎn),是過(guò)定點(diǎn)的直線,其斜率為,若,則函數(shù)與的圖象必有交點(diǎn),滿足題意;若,設(shè),相切時(shí),切點(diǎn)的坐標(biāo)為,則,解得,切線斜率為,由圖可知,當(dāng),即時(shí),,的圖象有交點(diǎn),此時(shí),與的圖象有交點(diǎn),函數(shù)與的圖象上存在關(guān)于軸的對(duì)稱點(diǎn),綜上可得,實(shí)數(shù)的取值范圍為.故答案為:【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求解函數(shù)的零點(diǎn)以及對(duì)稱性,函數(shù)與方程等基礎(chǔ)知識(shí),考查學(xué)生分析問(wèn)題,解決問(wèn)題的能力,推理與運(yùn)算求解能力,轉(zhuǎn)化與化歸思想和應(yīng)用意識(shí).16.③④【解析】

由直線與直線的位置關(guān)系,直線與平面的位置關(guān)系,面面垂直的判定定理和線面垂直的定義判斷.【詳解】①若且,的位置關(guān)系是平行、相交或異面,①錯(cuò);②若且,則或者,②錯(cuò);③若,設(shè)過(guò)的平面與交于直線,則,又,則,∴,③正確;④若,且,由線面垂直的定義知,④正確.故答案為:③④.【點(diǎn)睛】本題考查直線與直線的位置關(guān)系,直線與平面的位置關(guān)系,面面垂直的判定定理和線面垂直的定義,考查空間線面間的位置關(guān)系,掌握空間線線、線面、面面位置關(guān)系是解題基礎(chǔ).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)0.98;可用線性回歸模型擬合.(2)【解析】

(1)根據(jù)題目提供的數(shù)據(jù)求出,代入相關(guān)系數(shù)公式求出,根據(jù)的大小來(lái)確定結(jié)果;(2)求出藥品的每類劑型經(jīng)過(guò)兩次檢測(cè)后合格的概率,發(fā)現(xiàn)它們相同,那么經(jīng)過(guò)兩次檢測(cè)后,,三類劑型合格的種類數(shù)為,服從二項(xiàng)分布,利用二項(xiàng)分布的期望公式求解即可.【詳解】解:(1)由題意可知,,由公式,,∴與的關(guān)系可用線性回歸模型擬合;(2)藥品的每類劑型經(jīng)過(guò)兩次檢測(cè)后合格的概率分別為,,,由題意,,.【點(diǎn)睛】本題考查相關(guān)系數(shù)的求解,考查二項(xiàng)分布的期望,是中檔題.18.(1);(2)估計(jì)此次活動(dòng)可能贈(zèng)送出100000元話費(fèi)【解析】

(1)根據(jù)正態(tài)分布的性質(zhì)可求的值.(2)設(shè)某家長(zhǎng)參加活動(dòng)可獲贈(zèng)話費(fèi)為元,利用題設(shè)條件求出其分布列,再利用公式求出其期望后可得計(jì)此次活動(dòng)可能贈(zèng)送出的話費(fèi)數(shù)額.【詳解】(1)根據(jù)題中所給的統(tǒng)計(jì)表,結(jié)合題中所給的條件,可以求得又,,所以;(2)根據(jù)題意,某家長(zhǎng)參加活動(dòng)可獲贈(zèng)話費(fèi)的可能值有10,20,30,40元,且每位家長(zhǎng)獲得贈(zèng)送1次、2次話費(fèi)的概率都為,得10元的情況為低于平均值,概率,得20元的情況有兩種,得分低于平均值,一次性獲20元話費(fèi);得分不低于平均值,2次均獲贈(zèng)10元話費(fèi),概率,得30元的情況為:得分不低于平均值,一次獲贈(zèng)10元話費(fèi),另一次獲贈(zèng)20元話費(fèi),其概率為,得40元的其情況得分不低于平均值,兩次機(jī)會(huì)均獲20元話費(fèi),概率為.所以變量的分布列為:某家長(zhǎng)獲贈(zèng)話費(fèi)的期望為.所以估計(jì)此次活動(dòng)可能贈(zèng)送出100000元話費(fèi).【點(diǎn)睛】本題考查正態(tài)分布、離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,注意與正態(tài)分布有關(guān)的計(jì)算要利用該分布的密度函數(shù)圖象的對(duì)稱性來(lái)進(jìn)行,本題屬于中檔題.19.(1),(2)【解析】

(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式即可把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,利用消去參數(shù)即可得到直線的直角坐標(biāo)方程;(2)由于在直線上,寫出直線的標(biāo)準(zhǔn)參數(shù)方程參數(shù)方程,代入曲線的方程利用參數(shù)的幾何意義即可得出求解即可.【詳解】(1)直線的普通方程為,即,根據(jù)極坐標(biāo)與直角坐標(biāo)之間的相互轉(zhuǎn)化,,,而,則,即,故直線l的普通方程為,曲線C的直角坐標(biāo)方程(2)點(diǎn)在直線l上,且直線的傾斜角為,可設(shè)直線的參數(shù)方程為:(t為參數(shù)),代入到曲線C的方程得,,,由參數(shù)的幾何意義知.【點(diǎn)睛】熟練掌握極坐標(biāo)與直角坐標(biāo)的互化公式、方程思想、直線的參數(shù)方程中的參數(shù)的幾何意義是解題的關(guān)鍵,難度一般.20.(1)分布列見(jiàn)解析;(2)406.【解析】

(1)計(jì)算個(gè)人的血混合后呈陰性反應(yīng)的概率為,呈陽(yáng)性反應(yīng)的概率為,得到分布列.(2)計(jì)算,代入數(shù)據(jù)計(jì)算比較大小得到答案.【詳解】(1)設(shè)每個(gè)人的血呈陰性反應(yīng)的概率為,則.所以個(gè)人的血混合后呈陰性反應(yīng)的概率為,呈陽(yáng)性反應(yīng)的概率為.依題意可知,,所以的分布列為:(2)方案②中.結(jié)合(1)知每個(gè)人的平均化驗(yàn)次數(shù)為:時(shí),,此時(shí)1000人需要化驗(yàn)的總次數(shù)為690次,時(shí),,此時(shí)1000人需要化驗(yàn)的總次數(shù)為604次,時(shí),,此時(shí)1000人需要化驗(yàn)的次

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論