




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆安徽省合肥第十一中學(xué)數(shù)學(xué)高二上期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的圖象大致為()A. B.C. D.2.函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.3.若數(shù)列滿足,則的值為()A.2 B.C. D.4.丹麥數(shù)學(xué)家琴生(Jensen)是19世紀(jì)對數(shù)學(xué)分析作出卓越貢獻的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)恒成立,則稱函數(shù)在區(qū)間內(nèi)為“凸函數(shù)”,則下列函數(shù)在其定義域內(nèi)是“凸函數(shù)”的是()A. B.C. D.5.“x>1”是“x>0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知復(fù)數(shù)滿足,其中為虛數(shù)單位,則的共軛復(fù)數(shù)為()A. B.C. D.7.我們知道∶用平行于圓錐母線的平面(不過頂點)截圓錐,則平面與圓錐側(cè)面的交線是拋物線一部分,如圖,在底面半徑和高均為2的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點,已知過CD與E的平面與圓錐側(cè)面的交線是以E為頂點的圓錐曲線的一部分,則該圓錐曲線的焦點到其準(zhǔn)線的距離等于()A. B.C. D.18.已知拋物線的焦點與橢圓的右焦點重合,則拋物線的準(zhǔn)線方程為()A. B.C. D.9.已知動點在直線上,過點作圓的切線,切點為,則線段的長度的最小值為()A. B.4C. D.10.等比數(shù)列,,,成公差不為0的等差數(shù)列,,則數(shù)列的前10項和()A. B.C. D.11.命題“,使”的否定是()A.,有 B.,有C.,使 D.,使12.已知函數(shù)的圖象如圖所示,則其導(dǎo)函數(shù)的圖象大致形狀為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為第二象限角,若,則__________14.若復(fù)數(shù)滿足,則_____15.已知雙曲線的左、右焦點分別為、,直線與的左、右支分別交于點、(、均在軸上方).若直線、的斜率均為,且四邊形的面積為,則__________.16.若,則___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(a是常數(shù)).(1)當(dāng)時,求的單調(diào)區(qū)間與極值;(2)若,求a的取值范圍.18.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,,底面ABCD,E為BP的中點,,(1)證明:平面PAD;(2)求平面EAC與平面PAC夾角的余弦值19.(12分)如圖,在四棱錐中,面ABCD,,且,,,,,N為PD的中點.(1)求證:平面PBC;(2)在線段PD上是否存在一點M,使得直線CM與平面PBC所成角的正弦值是.若存在,求出的值,若不存在,說明理由.20.(12分)已知圓,直線(1)證明直線與圓C一定有兩個交點;(2)求直線與圓相交的最短弦長,并求對應(yīng)弦長最短時的直線方程21.(12分)已知拋物線的焦點為,點在第一象限且為拋物線上一點,點在點右側(cè),且△恰為等邊三角形(1)求拋物線的方程;(2)若直線與交于兩點,向量的夾角為(其中為坐標(biāo)原點),求實數(shù)的取值范圍.22.(10分)在△ABC中,角A、B、C所對的邊分別為a、b、c,角A、B、C的度數(shù)成等差數(shù)列,(1)若,求c的值;(2)求最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意首先確定函數(shù)的奇偶性,然后考查函數(shù)在特殊點的函數(shù)值排除錯誤選項即可確定函數(shù)的圖象.【詳解】由函數(shù)的解析式可得:,則函數(shù)為奇函數(shù),其圖象關(guān)于坐標(biāo)原點對稱,選項CD錯誤;當(dāng)時,,選項B錯誤.故選:A.【點睛】函數(shù)圖象的識辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對稱性.(4)從函數(shù)的特征點,排除不合要求的圖象.利用上述方法排除、篩選選項2、D【解析】求導(dǎo)后,利用求得函數(shù)的單調(diào)遞減區(qū)間.【詳解】解:,則,由得,故選:D.3、C【解析】通過列舉得到數(shù)列具有周期性,,所以.詳解】,同理可得:,可得,則.故選:C.4、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)函數(shù)公式求各函數(shù)二階導(dǎo)函數(shù),判斷其在定義域上是否恒有,即可知正確選項.【詳解】A:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;B:,則,故是“凸函數(shù)”;C:,則,故不是“凸函數(shù)”;D:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;故選:B5、A【解析】根據(jù)充分、必要條件間的推出關(guān)系,判斷“x>1”與“x>0”的關(guān)系.【詳解】“x>1”,則“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要條件.故選:A.6、D【解析】由復(fù)數(shù)除法求得后可得其共軛復(fù)數(shù)【詳解】由題意,∴故選:D7、C【解析】由圓錐的底面半徑和高及E的位置可得,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,可得C的坐標(biāo),設(shè)拋物線的方程,將C的坐標(biāo)代入求出拋物線的方程,進而可得焦點到其準(zhǔn)線的距離【詳解】設(shè)AB,CD的交點為,連接PO,由題意可得PO⊥面AB,所以PO⊥OB,由題意OB=OP=OC=2,因為E是母線PB的中點,所以,由題意建立適當(dāng)?shù)淖鴺?biāo)系,以BP為y軸以O(shè)E為x軸,E為坐標(biāo)原點,如圖所示∶可得∶,設(shè)拋物線的方程為y2=mx,將C點坐標(biāo)代入可得,所以,所以拋物線的方程為∶,所以焦點坐標(biāo)為,準(zhǔn)線方程為,所以焦點到其準(zhǔn)線的距離為故選:C8、C【解析】先求出橢圓的右焦點,從而可求拋物線的準(zhǔn)線方程.【詳解】,橢圓右焦點坐標(biāo)為,故拋物線的準(zhǔn)線方程為,故選:C.【點睛】本題考查拋物線的幾何性質(zhì),一般地,如果拋物線的方程為,則拋物線的焦點的坐標(biāo)為,準(zhǔn)線方程為,本題屬于基礎(chǔ)題.9、A【解析】求出的最小值,由切線長公式可結(jié)論【詳解】解:由,得最小時,最小,而,所以故選:A.10、C【解析】先設(shè)等比數(shù)列的公比為,結(jié)合條件可知,由等差中項可知,利用等比數(shù)列的通項公式進行化簡求出,最后利用分組求和法,以及等比數(shù)列、等差數(shù)列的求和公式,即可求出數(shù)列的前10項和.【詳解】設(shè)等比數(shù)列的公比為,,,成公差不為0的等差數(shù)列,則,,都不相等,,且,,,,即,解得:或(舍去),,所以數(shù)列的前10項和:.故選:C.11、B【解析】根據(jù)特稱命題的否定是全稱命題即可得正確答案【詳解】存在量詞命題的否定,只需把存在量詞改成全稱量詞,并把后面的結(jié)論否定,所以“,使”的否定為“,有”,故選:B.12、A【解析】利用f(x)先單調(diào)遞增的速度由快到慢,再由慢到快,結(jié)合導(dǎo)數(shù)的幾何意義判斷即可.【詳解】由f(x)的圖象可知,函數(shù)f(x)先單調(diào)遞增的速度由快到慢,再由慢到快,由導(dǎo)數(shù)的幾何意義可知,先減后增,且恒大于0,故符合題意的只有選項A.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出,再利用二倍角公式求的值.【詳解】因為為第二象限角,若,所以.所以.故答案為【點睛】本題主要考查同角三角函數(shù)的平方關(guān)系,考查二倍角的正弦公式,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.14、【解析】設(shè),則,利用復(fù)數(shù)相等,求出,的值,結(jié)合復(fù)數(shù)的模長公式進行計算即可【詳解】設(shè),則,則由得,即,則,得,則,故答案為【點睛】本題主要考查復(fù)數(shù)模長的計算,利用待定系數(shù)法,結(jié)合復(fù)數(shù)相等求出復(fù)數(shù)是解決本題的關(guān)鍵15、【解析】設(shè)點關(guān)于原點的對稱點為點,連接,分析可知四邊形為平行四邊形,可得出,設(shè),可得出直線的方程為,設(shè)點、,將直線的方程與雙曲線的方程聯(lián)立,列出韋達定理,求出的取值范圍,利用三角形的面積公式可求得的值,即可求得的值.【詳解】解:設(shè)點關(guān)于原點的對稱點為點,連接,如下圖所示:在雙曲線中,,,則,即點、,因為原點為、的中點,則四邊形為平行四邊形,所以,且,因為,故、、三點共線,所以,,故,由題意可知,,設(shè),則直線的方程為,設(shè)點、,聯(lián)立,可得,所以,,可得,由韋達定理可得,,可得,,整理可得,即,解得或(舍),所以,,解得.故答案為:.16、【解析】先求出函數(shù)的導(dǎo)函數(shù),再求出,即可得出答案.【詳解】解:由,得,則,所以,所以,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,極小值是,無極大值.(2)【解析】(1)由當(dāng),得到,求導(dǎo),再由,求解;(2)將,轉(zhuǎn)化為成立,令,求其最大值即可.【小問1詳解】解:當(dāng)時,,定義域為,所以,當(dāng)時,,當(dāng)時,,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以時,取得極小值是,無極大值.【小問2詳解】因為,即成立.設(shè),則,當(dāng)時,,當(dāng)時,,所以在上單調(diào)遞增,在上單調(diào)遞減,所以,所以,即.18、(1)證明見解析(2)【解析】(1)通過作輔助線,構(gòu)造平行四邊形,在平面PAD找到線并證明,根據(jù)線面平行的判定定理即可證明;(2)建立空間直角坐標(biāo)系,求出相應(yīng)點的坐標(biāo),進而求得相關(guān)的向量坐標(biāo),求出平面EAC與平面PAC的法向量,根據(jù)向量的夾角公式求得答案.【小問1詳解】證明:取PA的中點F,由E為PB的中點,則,,而,,所以且,則四邊形CDFE為平行四邊形,所以,又平面PAD,平面PAD,所以平面PAD【小問2詳解】∵平面ABCD,,∴AP,AB,AD兩兩垂直,以A為原點,,,向量方向分別為x軸,y軸,z軸建立如圖所示空間直角坐標(biāo)系,各點坐標(biāo)如下:,,,,,設(shè)平面APC的法向量為,由,,有,取,則,,即,設(shè)平面EAC的法向量為,由,,有,取,則,,即,所以,由原圖可知平面EAC與平面PAC夾角為銳角,所以平面EAC與平面PAC夾角的余弦值為19、(1)證明見解析(2)存在,且【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得平面.(2)設(shè),利用直線與平面所成角的正弦值列方程,化簡求得.【小問1詳解】設(shè)是的中點,連接,由于,所以四邊形是矩形,所以,由于平面,所以,以為空間坐標(biāo)原點建立如圖所示空間直角坐標(biāo)系,,,,設(shè)平面的法向量為,則,故可設(shè).,且平面,所以平面.【小問2詳解】,設(shè),則,,,設(shè)直線與平面所成角為,則,,兩邊平方并化簡得,解得或(舍去).所以存在,使直線與平面所成角的正弦值是,且.20、(1)證明見解析(2)答案見解析【解析】(1)由,變形為求解直線過的定點,即可得解;(2)法一:由圓心和連線與直線垂直求解;法二:由圓心到直線距離最大時求解.【小問1詳解】解:,所以,令,所以直線經(jīng)過定點,圓可變形為,因為,所以定點在圓內(nèi),所以直線和圓C相交,有兩個交點;【小問2詳解】法一:圓心為,到距離為,圓心與連線的斜率為,最短弦與圓心和的連線垂直,所以,所以最短弦長為,直線的方程為法二:圓心到直線距離:,,要求d的最大值,則,當(dāng)且僅當(dāng)時,d的最大值為,所以最短弦長為,直線的方程為.21、(1)(2)【解析】(1)根據(jù)△恰為等邊三角形由題意知:得到,再利用拋物線的定義求解;(2)聯(lián)立,結(jié)合韋達定理,根據(jù)的夾角為,由求解.【小問
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國細水霧滅火設(shè)備行業(yè)十三五規(guī)劃及投資戰(zhàn)略研究報告
- 2025-2030年中國硬度計市場競爭格局及投資戰(zhàn)略研究報告
- 2025-2030年中國男士護膚品行業(yè)競爭狀況及發(fā)展趨勢分析報告
- 2025-2030年中國電熱線市場運行狀況及前景趨勢分析報告
- 上海工程技術(shù)大學(xué)《預(yù)防口腔醫(yī)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 沈陽藥科大學(xué)《工業(yè)網(wǎng)絡(luò)與組態(tài)技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 中南大學(xué)《電動汽車原理與設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷
- 沈陽航空航天大學(xué)北方科技學(xué)院《初中道德與法治課程標(biāo)準(zhǔn)與教材》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧中醫(yī)藥大學(xué)杏林學(xué)院《電工儀表與測量》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣西金融職業(yè)技術(shù)學(xué)院《化工熱力學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川省瀘州市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- 《鄒忌諷齊王納諫》課件(共45張)
- 機械制圖教學(xué)課件(全套)
- 熱能與動力工程測試技術(shù)- 液位測量
- 化學(xué)纖維精品課件
- 中式面點師初級(五級)教學(xué)計劃、大綱
- QC成果構(gòu)造柱澆筑新技術(shù)的研發(fā)創(chuàng)新(附圖)
- 2020 ACLS-PC-SA課前自我測試試題及答案
- BIM技術(shù)應(yīng)用管理辦法
- 信息論與編碼第4章信息率失真函數(shù)
- 空間幾何向量法之點到平面的距離
評論
0/150
提交評論