版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖南省郴州市第二中學高三下學期第三次調(diào)考數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點為,對稱軸與準線的交點為,為上任意一點,若,則()A.30° B.45° C.60° D.75°2.《普通高中數(shù)學課程標準(2017版)》提出了數(shù)學學科的六大核心素養(yǎng).為了比較甲、乙兩名高二學生的數(shù)學核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標對二人進行了測驗,根據(jù)測驗結果繪制了雷達圖(如圖,每項指標值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)高于乙B.甲的數(shù)學建模素養(yǎng)優(yōu)于數(shù)學抽象素養(yǎng)C.乙的六大素養(yǎng)中邏輯推理最差D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲3.如圖,在中,,是上的一點,若,則實數(shù)的值為()A. B. C. D.4.已知中,,則()A.1 B. C. D.5.如圖是二次函數(shù)的部分圖象,則函數(shù)的零點所在的區(qū)間是()A. B. C. D.6.已知函數(shù)滿足,且,則不等式的解集為()A. B. C. D.7.復數(shù)的共軛復數(shù)為()A. B. C. D.8.已知數(shù)列,,,…,是首項為8,公比為得等比數(shù)列,則等于()A.64 B.32 C.2 D.49.蒙特卡洛算法是以概率和統(tǒng)計的理論、方法為基礎的一種計算方法,將所求解的問題同一定的概率模型相聯(lián)系;用均勻投點實現(xiàn)統(tǒng)計模擬和抽樣,以獲得問題的近似解,故又稱統(tǒng)計模擬法或統(tǒng)計實驗法.現(xiàn)向一邊長為的正方形模型內(nèi)均勻投點,落入陰影部分的概率為,則圓周率()A. B.C. D.10.已知等差數(shù)列的前n項和為,,則A.3 B.4 C.5 D.611.已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則()A.4 B.3 C.2 D.112.已知函數(shù)滿足:當時,,且對任意,都有,則()A.0 B.1 C.-1 D.二、填空題:本題共4小題,每小題5分,共20分。13.記為等比數(shù)列的前n項和,已知,,則_______.14.若x,y滿足,且y≥?1,則3x+y的最大值_____15.甲、乙兩人同時參加公務員考試,甲筆試、面試通過的概率分別為和;乙筆試、面試通過的概率分別為和.若筆試面試都通過才被錄取,且甲、乙錄取與否相互獨立,則該次考試只有一人被錄取的概率是__________.16.若函數(shù)的圖像上存在點,滿足約束條件,則實數(shù)的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)當時,證明:.18.(12分)已知橢圓()經(jīng)過點,離心率為,、、為橢圓上不同的三點,且滿足,為坐標原點.(1)若直線、的斜率都存在,求證:為定值;(2)求的取值范圍.19.(12分)設不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.20.(12分)已知三棱錐中側面與底面都是邊長為2的等邊三角形,且面面,分別為線段的中點.為線段上的點,且.(1)證明:為線段的中點;(2)求二面角的余弦值.21.(12分)已知函數(shù).(1)當時,求函數(shù)的值域;(2)的角的對邊分別為且,,求邊上的高的最大值.22.(10分)某企業(yè)為了了解該企業(yè)工人組裝某產(chǎn)品所用時間,對每個工人組裝一個該產(chǎn)品的用時作了記錄,得到大量統(tǒng)計數(shù)據(jù).從這些統(tǒng)計數(shù)據(jù)中隨機抽取了個數(shù)據(jù)作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時不超過(分鐘),則稱這個工人為優(yōu)秀員工.(1)求這個樣本數(shù)據(jù)的中位數(shù)和眾數(shù);(2)以這個樣本數(shù)據(jù)中優(yōu)秀員工的頻率作為概率,任意調(diào)查名工人,求被調(diào)查的名工人中優(yōu)秀員工的數(shù)量分布列和數(shù)學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
如圖所示:作垂直于準線交準線于,則,故,得到答案.【詳解】如圖所示:作垂直于準線交準線于,則,在中,,故,即.故選:.【點睛】本題考查了拋物線中角度的計算,意在考查學生的計算能力和轉化能力.2、D【解析】
根據(jù)雷達圖對選項逐一分析,由此確定敘述正確的選項.【詳解】對于A選項,甲的數(shù)據(jù)分析分,乙的數(shù)據(jù)分析分,甲低于乙,故A選項錯誤.對于B選項,甲的建模素養(yǎng)分,乙的建模素養(yǎng)分,甲低于乙,故B選項錯誤.對于C選項,乙的六大素養(yǎng)中,邏輯推理分,不是最差,故C選項錯誤.對于D選項,甲的總得分分,乙的總得分分,所以乙的六大素養(yǎng)整體平均水平優(yōu)于甲,故D選項正確.故選:D【點睛】本小題主要考查圖表分析和數(shù)據(jù)處理,屬于基礎題.3、B【解析】
變形為,由得,轉化在中,利用三點共線可得.【詳解】解:依題:,又三點共線,,解得.故選:.【點睛】本題考查平面向量基本定理及用向量共線定理求參數(shù).思路是(1)先選擇一組基底,并運用該基底將條件和結論表示成向量的形式,再通過向量的運算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值.(2)直線的向量式參數(shù)方程:三點共線?(為平面內(nèi)任一點,)4、C【解析】
以為基底,將用基底表示,根據(jù)向量數(shù)量積的運算律,即可求解.【詳解】,,.故選:C.【點睛】本題考查向量的線性運算以及向量的基本定理,考查向量數(shù)量積運算,屬于中檔題.5、B【解析】
根據(jù)二次函數(shù)圖象的對稱軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點函數(shù)值正負,即可求出結論.【詳解】∵,結合函數(shù)的圖象可知,二次函數(shù)的對稱軸為,,,∵,所以在上單調(diào)遞增.又因為,所以函數(shù)的零點所在的區(qū)間是.故選:B.【點睛】本題考查二次函數(shù)的圖象及函數(shù)的零點,屬于基礎題.6、B【解析】
構造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,即可得到結論.【詳解】設,則函數(shù)的導數(shù),,,即函數(shù)為減函數(shù),,,則不等式等價為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點睛】本題主要考查利用導數(shù)研究函數(shù)單調(diào)性,根據(jù)函數(shù)的單調(diào)性解不等式,考查學生分析問題解決問題的能力,是難題.7、D【解析】
直接相乘,得,由共軛復數(shù)的性質(zhì)即可得結果【詳解】∵∴其共軛復數(shù)為.故選:D【點睛】熟悉復數(shù)的四則運算以及共軛復數(shù)的性質(zhì).8、A【解析】
根據(jù)題意依次計算得到答案.【詳解】根據(jù)題意知:,,故,,.故選:.【點睛】本題考查了數(shù)列值的計算,意在考查學生的計算能力.9、A【解析】
計算出黑色部分的面積與總面積的比,即可得解.【詳解】由,∴.故選:A【點睛】本題考查了面積型幾何概型的概率的計算,屬于基礎題.10、C【解析】
方法一:設等差數(shù)列的公差為,則,解得,所以.故選C.方法二:因為,所以,則.故選C.11、A【解析】
根據(jù)等差數(shù)列和等比數(shù)列公式直接計算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計算,意在考查學生的計算能力.12、C【解析】
由題意可知,代入函數(shù)表達式即可得解.【詳解】由可知函數(shù)是周期為4的函數(shù),.故選:C.【點睛】本題考查了分段函數(shù)和函數(shù)周期的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設等比數(shù)列的公比為,將已知條件等式轉化為關系式,求解即可.【詳解】設等比數(shù)列的公比為,,.故答案為:.【點睛】本題考查等比數(shù)列通項的基本量運算,屬于基礎題.14、5.【解析】
由約束條件作出可行域,令z=3x+y,化為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【詳解】由題意作出可行域如圖陰影部分所示.設,當直線經(jīng)過點時,取最大值5.故答案為:5【點睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結合的解題思想方法,是中檔題.15、【解析】
分別求得甲、乙被錄取的概率,根據(jù)獨立事件概率公式可求得結果.【詳解】甲被錄取的概率;乙被錄取的概率;只有一人被錄取的概率.故答案為:.【點睛】本題考查獨立事件概率的求解問題,屬于基礎題.16、1【解析】由題知x>0,且滿足約束條件的圖象為由圖可知當與交于點B(2,1),當直線過B點時,m取得最大值為1.點睛:線性規(guī)劃的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結合的思想.需要注意的是:一、準確無誤地作出可行域;二、畫標準函數(shù)所對應的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三、一般情況下,目標函數(shù)的最大或最小會在可行域的端點或邊界上取得.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】
(1)求導得,分類討論和,利用導數(shù)研究含參數(shù)的函數(shù)單調(diào)性;(2)根據(jù)(1)中求得的的單調(diào)性,得出在處取得最大值為,構造函數(shù),利用導數(shù),推出,即可證明不等式.【詳解】解:(1)由于,得,當時,,此時在上遞增;當時,由,解得,若,則,若,,此時在遞增,在上遞減.(2)由(1)知在處取得最大值為:,設,則,令,則,則在單調(diào)遞減,∴,即,則在單調(diào)遞減∴,∴,∴.【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論和構造新函數(shù),通過導數(shù)證明不等式,考查轉化思想和計算能力.18、(1)證明見解析;(2).【解析】
(1)首先根據(jù)題中條件求出橢圓方程,設、、點坐標,根據(jù)利用坐標表示出即可得證;(2)設直線方程,再與橢圓方程聯(lián)立利用韋達定理表示出,即可求出范圍.【詳解】(1)依題有,所以橢圓方程為.設,,,由為的重心,;又因為,,,,(2)當?shù)男甭什淮嬖跁r:,,,代入橢圓得,,,當?shù)男甭蚀嬖跁r:設直線為,這里,由,,根據(jù)韋達定理有,,,故,代入橢圓方程有,又因為,綜上,的范圍是.【點睛】本題主要考查了橢圓方程的求解,三角形重心的坐標關系,直線與橢圓所交弦長,屬于一般題.19、(1)證明見解析;(2).【解析】試題分析:(1)首先求得集合M,然后結合絕對值不等式的性質(zhì)即可證得題中的結論;(2)利用平方做差的方法可證得|1-4ab|>2|a-b|.試題解析:(Ⅰ)證明:記f(x)=|x-1|-|x+2|,則f(x)=,所以解得-<x<,故M=(-,).所以,||≤|a|+|b|<×+×=.(Ⅱ)由(Ⅰ)得0≤a2<,0≤b2<.|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=4(a2-1)(b2-1)>0.所以,|1-4ab|>2|a-b|.20、(1)見解析;(2)【解析】
(1)設為中點,連結,先證明,可證得,假設不為線段的中點,可得平面,這與矛盾,即得證;(2)以為原點,以分別為軸建立空間直角坐標系,分別求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.【詳解】(1)設為中點,連結.∴,,又平面,平面,∴.又分別為中點,,又,∴.假設不為線段的中點,則與是平面內(nèi)內(nèi)的相交直線,從而平面,這與矛盾,所以為線段的中點.(2)以為原點,由條件面面,∴,以分別為軸建立空間直角坐標系,則,,,,,,.設平面的法向量為所以取,則,.同法可求得平面的法向量為∴,由圖知二面角為銳二面角,二面角的余弦值為.【點睛】本題考查了立體幾何與空間向量綜合,考查了學生邏輯推理,空間想象,數(shù)學運算的能力,屬于中檔題.21、(1).(2)【解析】
(1)由題意利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的定義域和值域,得出結論.(2)由題意利用余弦定理?三角形的面積公式?基本不等式求得的最大值,可得邊上的高的最大值.【詳解】解:(1)∵函數(shù),當時,,.(2)中,,∴.由余弦定理可得,當且僅當時,取等號,即的最大值為3.再根據(jù),故當取得最大值3時,取得最大值為.【點睛】本題考查降冪公式、兩角和的正弦公式,考查正弦函數(shù)的性質(zhì),余弦定理,三角形面積公式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 戰(zhàn)略合作伙伴關系合同
- 2024年有償服務協(xié)議書標準版
- 2024品牌轉讓談判方案
- 版權合作共贏協(xié)議書
- 2024年公司工程裝修合同
- 企業(yè)間采購協(xié)議范本
- 年度寫字樓裝修協(xié)議書范本
- 海外獨家銷售協(xié)議
- 餐飲行業(yè)合伙經(jīng)營合同樣本
- 耗材購銷的合同范本2024年
- 2-1、職業(yè)生涯規(guī)劃概述
- 高級廚師基礎知識題庫100道及答案
- 2024年公安機關人民警察基本級執(zhí)法資格考試試題
- 大力弘揚教育家精神課件
- 人教版小學五年級科學上冊《第四單元 光》大單元整體教學設計
- DL∕T 5754-2017 智能變電站工程調(diào)試質(zhì)量檢驗評定規(guī)程
- 近年來被公開報道的起重大醫(yī)院感染事件正式完整版
- 統(tǒng)編版(2024新教材)七年級上冊語文第一單元測試卷(含答案)
- GJB9001C首件鑒定報告
- 2024年《考評員》應知應會考試題庫(附答案)
- 人工智能設計倫理智慧樹知到期末考試答案章節(jié)答案2024年浙江大學
評論
0/150
提交評論