版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆海南省白沙中學(xué)數(shù)學(xué)高二上期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.黃金矩形是寬()與長()的比值為黃金分割比的矩形,如圖所示,把黃金矩形分割成一個正方形和一個黃金矩形,再把矩形分割出正方形.在矩形內(nèi)任取一點,則該點取自正方形內(nèi)的概率是A. B.C. D.2.已知,則點關(guān)于平面的對稱點的坐標是()A. B.C. D.3.“”是“方程表示雙曲線”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.設(shè)拋物線C:的焦點為,準線為.是拋物線C上異于的一點,過作于,則線段的垂直平分線()A.經(jīng)過點 B.經(jīng)過點C.平行于直線 D.垂直于直線5.已知,,,若、、三個向量共面,則實數(shù)A3 B.5C.7 D.96.已知數(shù)列滿足,其前項和為,,.若數(shù)列的前項和為,則滿足成立的的最小值為()A.10 B.11C.12 D.137.如圖,在單位正方體中,以為原點,,,為坐標向量建立空間直角坐標系,則平面的法向量是()A.,1, B.,1,C.,, D.,1,8.在長方體中,,,點分別在棱上,,,則()A. B.C. D.9.在四面體OABC中,,,,則與AC所成角的大小為()A.30° B.60°C.120° D.150°10.下面三種說法中,正確說法的個數(shù)為()①如果兩個平面有三個公共點,那么這兩個平面重合;②兩條直線可以確定一個平面;③若,,,則A.1 B.2C.3 D.011.若數(shù)列的前項和,則此數(shù)列是()A.等差數(shù)列 B.等比數(shù)列C.等差數(shù)列或等比數(shù)列 D.以上說法均不對12.已知正方體中,分別為棱的中點,則直線與所成角的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)極值點的個數(shù)是______14.若等比數(shù)列滿足,則的前n項和____________15.設(shè)有下列命題:①當(dāng),時,不等式恒成立;②函數(shù)在上的最小值為2;③函數(shù)在上的最大值為;④若,,且,則的最小值為其中真命題為________________.(填寫所有真命題的序號)16.已知橢圓的短軸長為2,上頂點為,左頂點為,左、右焦點分別是,,且的面積為,點為橢圓上的任意一點,則的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知的展開式中只有第五項的二項式系數(shù)最大.(1)求該展開式中有理項的項數(shù);(2)求該展開式中系數(shù)最大的項.18.(12分)已知數(shù)列的前n項和(1)求的通項公式;(2)若數(shù)列的前n項和,求數(shù)列的前n項和19.(12分)已知橢圓經(jīng)過點,左焦點為.(Ⅰ)求橢圓的方程;(Ⅱ)若是橢圓的右頂點,過點且斜率為的直線交橢圓于兩點,求的面積.20.(12分)某班主任對全班名學(xué)生進行了作業(yè)量多少與手機網(wǎng)游的調(diào)查,數(shù)據(jù)如下表:認為作業(yè)多認為作業(yè)不多總數(shù)喜歡手機網(wǎng)游不喜歡手機網(wǎng)游總數(shù)(1)若隨機地抽問這個班的一名學(xué)生,分別求事件“認為作業(yè)不多”和事件“喜歡手機網(wǎng)游且認為作業(yè)多”的概率;(2)若在“認為作業(yè)多”的學(xué)生中已經(jīng)用分層抽樣的方法選取了名學(xué)生.現(xiàn)要從這名學(xué)生中任取名學(xué)生了解情況,求其中恰有名“不喜歡手機網(wǎng)游”的學(xué)生的概率21.(12分)設(shè)等比數(shù)列的前項和為,且()(1)求數(shù)列的通項公式;(2)在與之間插入個實數(shù),使這個數(shù)依次組成公差為的等差數(shù)列,設(shè)數(shù)列的前項和為,求證:22.(10分)已知直線與直線交于點.(1)求過點且平行于直線的直線的方程,并求出兩平行直線間的距離;(2)求過點并且在兩坐標軸上的截距互為相反數(shù)的直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè)矩形的長,寬分別為,所以,把黃金矩形分割成一個正方形和一個黃金矩形,所以,設(shè)矩形的面積為,正方形的面積為,設(shè)在矩形內(nèi)任取一點,則該點取自正方形內(nèi)的概率是,則,故本題選C.【詳解】本題考查了幾何概型,考查了運算能力.2、C【解析】根據(jù)對稱性求得坐標即可.【詳解】點關(guān)于平面的對稱點的坐標是,故選:C3、A【解析】方程表示雙曲線則,解得,是“方程表示雙曲線”的充分不必要條件.故選:A4、A【解析】依據(jù)題意作出焦點在軸上的開口向右的拋物線,根據(jù)垂直平分線的定義和拋物線的定義可知,線段的垂直平分線經(jīng)過點,即可求解.【詳解】如圖所示:因為線段的垂直平分線上的點到的距離相等,又點在拋物線上,根據(jù)定義可知,,所以線段的垂直平分線經(jīng)過點.故選:A.5、A【解析】由空間向量共面原理得存在實數(shù),,使得,由此能求出實數(shù)【詳解】解:,,,、、三個向量共面,存在實數(shù),,使得,即有:,解得,,實數(shù)故選:【點睛】本題考查空間向量共面原理的應(yīng)用,屬于基礎(chǔ)題6、A【解析】根據(jù)題意和對數(shù)的運算公式可證得為以2為首項,2為公比的等比數(shù)列,求出,進而得到,利用裂項相消法求得,再解不等式即可.【詳解】由,又,所以數(shù)列是以2為首項,2為公比的等比數(shù)列,故,則,所以,由,得,即,有,又,所以,即n的最小值為10.故選:A7、A【解析】設(shè)平面的法向量是,,,由可求得法向量.【詳解】在單位正方體中,以為原點,,,為坐標向量建立空間直角坐標系,,0,,,1,,,1,,,1,,,0,,設(shè)平面的法向量是,,,則,取,得,1,,平面的法向量是,1,.故選:.8、D【解析】依題意可得,從而得到,即可得到,從而得解;【詳解】解:由長方體的性質(zhì)可得,又,所以,因為,所以,所以,因為,所以;故選:D9、B【解析】以為空間的一個基底,求出空間向量求的夾角即可判斷作答.【詳解】在四面體OABC中,不共面,則,令,依題意,,設(shè)與AC所成角的大小為,則,而,解得,所以與AC所成角的大小為.故選:B10、A【解析】對于①,有兩種情況,對于②考慮異面直線,對于③根據(jù)線面公理可判斷.【詳解】如果兩個平面有三個公共點,那么這兩個平面重合或者是相交,故①不正確;兩條異面直線不能確定一個平面,故②不正確;若,,,可知必在交線上,則,故③正確;綜上所述只有一個說法是正確的.故選:A11、D【解析】利用數(shù)列通項與前n項和的關(guān)系和等差數(shù)列及等比數(shù)列的定義判斷.【詳解】當(dāng)時,,當(dāng)時,,當(dāng)時,,所以是等差數(shù)列;當(dāng)時,為非等差數(shù)列,非等比數(shù)列’當(dāng)時,,所以是等比數(shù)列,故選:D12、D【解析】以D為原點建立空間直角坐標系,求出E,F,B,D1點的坐標,利用直線夾角的向量求法求解【詳解】如圖,以D為原點建立空間直角坐標系,設(shè)正方體的邊長為2,則,,,,,直線與所成角的余弦值為:.故選D【點睛】本題主要考查了空間向量的應(yīng)用及向量夾角的坐標運算,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、0【解析】通過導(dǎo)數(shù)判斷函數(shù)的單調(diào)性即可得極值點的情況.【詳解】因為,,所以在上恒成立,所以在上單調(diào)遞增,所以函數(shù)的極值點的個數(shù)是0,故答案為:0.14、##【解析】由已知及等比數(shù)列的通項公式得到首項和公比,再利用前n項和公式計算即可.【詳解】設(shè)等比數(shù)列的公比為,由已知,得,解得,所以.故答案為:15、①③④【解析】①直接利用基本不等式判斷即可;②直接利用基本不等式以及等號成立的條件判斷即可;③分子、分母同除,利用基本不等式即可判斷;④設(shè),,利用指、對互化以及基本不等式即可判斷.【詳解】由于,,故恒成立,當(dāng)且僅當(dāng)時取等號,所以①正確;,當(dāng)且僅當(dāng),即時取等號,由于,所以②不正確;因為,所以,當(dāng)且僅當(dāng)時取等號,而,即函數(shù)的最大值為,所以③正確;設(shè),,則,,,,,所以,當(dāng)且僅當(dāng),時取等號,故的最小值為,所以④正確.故答案為:①③④【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.16、【解析】根據(jù)的面積和短軸長得出a,b,c的值,從而得出的范圍,得到關(guān)于的函數(shù),從而求出答案【詳解】由已知得,故,∵的面積為,∴,∴,又,∴,,∴,又,∴,∴.即的取值范圍為.故答案為點睛】本題考查了橢圓的簡單性質(zhì),函數(shù)最值的計算,熟練掌握橢圓的基本性質(zhì)是解題的關(guān)鍵,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)和【解析】(1)先求出,再寫出二項式展開式的通項,令即可求解;(2)設(shè)第項系數(shù)最大,則,即可解得的值,進而可得展開式中系數(shù)最大的項.【詳解】(1)由題意可得:,得,的展開式通項為,,要求展開式中有理項,只需令,所以所以有理項有5項,(2)設(shè)第項系數(shù)最大,則,即,即,解得:,因為,所以或所以,所以展開式中系數(shù)最大的項為和.【點睛】解二項式的題關(guān)鍵是求二項式展開式的通項,求有理項需要讓的指數(shù)位置是整數(shù),求展開式中系數(shù)最大的項需要滿足第項的系數(shù)大于等于第項的系數(shù),第項的系數(shù)大于等于第項的系數(shù),屬于中檔題18、(1),;(2),.【解析】(1)根據(jù)的關(guān)系可得,根據(jù)等比數(shù)列的定義寫出的通項公式,進而可得的通項公式;(2)利用的關(guān)系求的通項公式,結(jié)合(1)結(jié)論可得,再應(yīng)用分組求和、錯位相消法求的前n項和【小問1詳解】.①當(dāng)時,,可得當(dāng)時,.②①-②得,則,而a1-1=1不為零,故是首項為1,公比為2的等比數(shù)列,則∴數(shù)列的通項公式為,【小問2詳解】∵,∴當(dāng)時,,當(dāng)時,,又也適合上式,∴,∴,令,,則,又,∴19、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由橢圓的定義求出的值,由求出,代入,得到橢圓的方程;(Ⅱ)由點斜式求出直線的方程,設(shè),聯(lián)立直線與橢圓方程,求出的值,再算出的面積試題解析(Ⅰ)由橢圓的定義得:又,故,∴橢圓的方程為:.(Ⅱ)過的直線方程為,,聯(lián)立,設(shè),則,∴的面積.點睛:本題主要考查了求橢圓的方程,直線與橢圓相交時弦長的計算等,屬于中檔題.在(Ⅱ)中,注意的面積的計算公式20、(1)事件“認為作業(yè)不多”和事件“喜歡手機網(wǎng)游且認為作業(yè)多”的概率分別為、;(2).【解析】(1)利用古典概型的概率公式可求得所求事件的概率;(2)確定所選的名學(xué)生中,“不喜歡手機網(wǎng)游”和“喜歡手機網(wǎng)游”的學(xué)生人數(shù),加以標記,列舉出所有的基本事件,確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:由題意可知,全班名學(xué)生中,“認為作業(yè)不多”的學(xué)生人數(shù)為人,“喜歡手機網(wǎng)游且認為作業(yè)多”的學(xué)生人數(shù)為人,因此,隨機地抽問這個班的一名學(xué)生,事件“認為作業(yè)不多”的概率為,事件“喜歡手機網(wǎng)游且認為作業(yè)多”的概率為.【小問2詳解】解:在“認為作業(yè)多”的學(xué)生中已經(jīng)用分層抽樣的方法選取了名學(xué)生,這名學(xué)生中“不喜歡手機網(wǎng)游”的學(xué)生人數(shù)為,記為,名學(xué)生中“喜歡手機網(wǎng)游”的學(xué)生人數(shù)為,分別記為、、、,從這名學(xué)生中任取名學(xué)生,所有的基本事件有:、、、、、、、、、,共種,其中,事件“恰有名“不喜歡手機網(wǎng)游”的學(xué)生”包含的基本事件有:、、、,共種,故所求概率為.21、(1)(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度擔(dān)?;鹈庳?zé)合同范本3篇
- 2024年快遞柜制造商銷售合同
- 2024年地基擋墻邊坡地基處理施工合同3篇
- 2024年供應(yīng)鏈債權(quán)擔(dān)保及信用增級合同3篇
- 2024年度打樁工程綠色施工與節(jié)能減排合同3篇
- 2024停車場車位租賃與物業(yè)管理服務(wù)合同3篇
- 2024年度生態(tài)碎石工程承包協(xié)議6篇
- 2024全新二手房買賣合同合同履行監(jiān)督條款下載3篇
- 2024年工業(yè)爐窯設(shè)備全面檢修與保養(yǎng)服務(wù)協(xié)議3篇
- 2024年度知識產(chǎn)權(quán)與技術(shù)標準制定合作委托合同3篇
- 2024年廣東省高職高考語文試卷及答案
- 甘肅省蘭州市(2024年-2025年小學(xué)三年級語文)人教版綜合練習(xí)(上學(xué)期)試卷(含答案)
- 公司級員工安全培訓(xùn)試題及完整答案一套
- 2024年人教版小學(xué)四年級信息技術(shù)(上冊)期末試卷及答案
- 《病梅館記》解析版(分層作業(yè))
- 國家開放大學(xué)2024年春季學(xué)期電大《商務(wù)英語4》試題及答案
- 高中生物學(xué)選擇性必修一測試卷及答案解析
- 2024廣西專業(yè)技術(shù)人員繼續(xù)教育公需科目參考答案(100分)
- NB-T32004-2018光伏并網(wǎng)逆變器技術(shù)規(guī)范
- 領(lǐng)導(dǎo)與班子廉潔談話記錄(4篇)
- 衡陽市耒陽市2022-2023學(xué)年七年級上學(xué)期期末語文試題【帶答案】
評論
0/150
提交評論