2025屆湖北省宜昌市長陽縣一中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆湖北省宜昌市長陽縣一中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆湖北省宜昌市長陽縣一中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆湖北省宜昌市長陽縣一中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆湖北省宜昌市長陽縣一中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆湖北省宜昌市長陽縣一中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過點且與直線垂直的直線方程是()A. B.C. D.2.已知三角形三個頂點為、、,則邊上的高所在直線的方程為()A. B.C. D.3.設(shè)函數(shù)在上單調(diào)遞減,則實數(shù)的取值范圍是()A. B.C. D.4.如圖,在長方體中,,E,F(xiàn)分別為的中點,則異面直線與所成角的余弦值為()A. B.C. D.5.當(dāng)時,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.6.已知動點的坐標滿足方程,則的軌跡方程是()A. B.C. D.7.已知雙曲線的左、右焦點分別為,,點在雙曲線的右支上,且,則雙曲線離心率的取值范圍是()A. B.C. D.8.下列命題中正確的是()A.若為真命題,則為真命題B.在中“”是“”的充分必要條件C.命題“若,則或”的逆否命題是“若或,則”D.命題,使得,則,使得9.橢圓C:的焦點為,,點P在橢圓上,若,則的面積為()A.48 B.40C.28 D.2410.已知向量,,且,則的值為()A. B.C.或 D.或11.復(fù)數(shù)的共軛復(fù)數(shù)的虛部為()A. B.C. D.12.已知雙曲線的左、右焦點分別為,,P為雙曲線C上一點,,直線與y軸交于點Q,若,則雙曲線C的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.甲口袋中裝有2個黑球和1個白球,乙口袋中裝有3個白球.現(xiàn)同時從甲、乙兩口袋中各任取一個球交換放入對方口袋,共進行了2次這樣的操作后,甲口袋中恰有2個黑球的概率為__________________.14.已知直線與平行,則實數(shù)的值為_____________.15.已知圓關(guān)于直線對稱,則________16.已知動圓P過定點,且在定圓的內(nèi)部與其相內(nèi)切,則動圓P的圓心的軌跡方程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知E,F(xiàn)分別是正方體的棱BC和CD的中點(1)求與所成角的大??;(2)求與平面所成角的余弦值18.(12分)已知拋物線與直線相切.(1)求該拋物線的方程;(2)在軸的正半軸上,是否存在某個確定的點M,過該點的動直線與拋物線C交于A,B兩點,使得為定值.如果存在,求出點M的坐標;如果不存在,請說明理由.19.(12分)自2021年秋季起,江西省普通高中起始年級全面實施新課程改革,為了迎接新高考,某校舉行物理和化學(xué)等選科考試,其中600名學(xué)生化學(xué)成績(滿分100分)的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:第一組,第二組,第三組,第四組,第五組.已知圖中前三個組的頻率依次構(gòu)成等差數(shù)列,第一組和第五組的頻率相同(1)求a,b的值;(2)估算高分(大于等于80分)人數(shù);(3)估計這600名學(xué)生化學(xué)成績的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)和中位數(shù)(中位數(shù)精確到0.1)20.(12分)在平面直角坐標系xOy中,拋物線:,點,過點的直線l與拋物線交于A,B兩點:當(dāng)l與拋物線的對稱軸垂直時,(1)求拋物線的標準方程;(2)若點A在第一象限,記的面積為,的面積為,求的最小值21.(12分)已知圓C的圓心在直線上,且圓C經(jīng)過,兩點.(1)求圓C的標準方程.(2)設(shè)直線與圓C交于A,B(異于坐標原點O)兩點,若以AB為直徑的圓過原點,試問直線l是否過定點?若是,求出定點坐標;若否,請說明理由.22.(10分)已知拋物線的焦點為F,點是拋物線上的點,且.(1)求拋物線方程;(2)直線與拋物線交于、兩點,且.求△OPQ面積的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)兩直線垂直時斜率乘積為,可以直接求出所求直線的斜率,再根據(jù)點斜式求出直線方程,最后化成一般式方程即可.【詳解】因為直線的斜率為,故所求直線的斜率等于,所求直線的方程為,即,故選:C2、A【解析】求出直線的斜率,可求得邊上的高所在直線的斜率,利用點斜式可得出所求直線的方程.【詳解】直線的斜率為,故邊上的高所在直線的斜率為,因此,邊上的高所在直線的方程為.故選:A.3、B【解析】分析可知,對任意的恒成立,由參變量分離法可得出,求出在時的取值范圍,即可得出實數(shù)的取值范圍.【詳解】因為,則,由題意可知對任意的恒成立,則對任意的恒成立,當(dāng)時,,.故選:B.4、A【解析】利用平行線,將異面直線的夾角問題轉(zhuǎn)化為共面直線的夾角問題,再解三角形.【詳解】取BC中點H,BH中點I,連接AI、FI、,因為E為中點,在長方體中,,所以四邊形是平行四邊形,所以所以,又因為F為的中點,所以,所以,則即為異面直線與所成角(或其補角).設(shè)AB=BC=4,則,則,,根據(jù)勾股定理:,,,所以是等腰三角形,所以.故B,C,D錯誤.故選:A.5、A【解析】設(shè),對實數(shù)的取值進行分類討論,求得,解不等式,綜合可得出實數(shù)的取值范圍.【詳解】設(shè),其中.①當(dāng)時,即當(dāng)時,函數(shù)在區(qū)間上單調(diào)遞增,則,解得,此時不存在;②當(dāng)時,,解得;③當(dāng)時,即當(dāng)時,函數(shù)在區(qū)間上單調(diào)遞減,則,解得,此時不存在.綜上所述,實數(shù)的取值范圍是.故選:A.6、C【解析】此方程表示點到點的距離與到點的距離之差為8,而這正好符合雙曲線的定義,點的軌跡是雙曲線的右支,,的軌跡方程是,故選C.7、C【解析】根據(jù)雙曲線的定義求得,利用可得離心率范圍【詳解】因為,又,所以,,又,即,,所以離心率故選:C8、B【解析】A選項,當(dāng)一真一假時也滿足條件,但不滿足為真命題;B選項,可以使用正弦定理和大邊對大角,大角對大邊進行證明;C選項,利用逆否命題的定義進行判斷,D選項,特稱命題的否定,把存在改為任意,把結(jié)論否定,故可判斷D選項.【詳解】若為真命題,則可能均為真,或一真一假,則可能為真命題,也可能為假命題,故A錯誤;在中,由正弦定理得:,若,則,從而,同理,若,則由正弦定理得,,所以,故在中“”是“”的充分必要條件,B正確;命題“若,則或”的逆否命題是“若且,則”,故C錯誤;命題,使得,則,使得,故D錯誤.故選:B9、D【解析】根據(jù)給定條件結(jié)合橢圓定義求出,再判斷形狀計算作答.【詳解】橢圓C:的半焦距,長半軸長,由橢圓定義得,而,且,則有是直角三角形,,所以的面積為24.故選:D10、C【解析】根據(jù)空間向量平行的性質(zhì)得,代入數(shù)值解方程組即可.【詳解】因為,所以,所以,所以,解得或.故選:C.11、B【解析】先根據(jù)復(fù)數(shù)除法與加法運算求解得,再求共軛復(fù)數(shù)及其虛部.【詳解】解:,所以其共軛復(fù)數(shù)為,其虛部為故選:B12、B【解析】由題意可設(shè)且,即得a、b的數(shù)量關(guān)系,進而求雙曲線C的漸近線方程.【詳解】由題設(shè),,,又,P為雙曲線C上一點,∴,又,為的中點,∴,即,∴雙曲線C的漸近線方程為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分兩類:兩次都互相交換白球的概率和第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率求和可得答案.【詳解】分兩類:①兩次都互相交換白球的概率為;②第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率為.故答案為:.14、或【解析】根據(jù)平行線的性質(zhì)進行求解即可.【詳解】因為直線與平行,所以有:或,故答案為:或15、1【解析】根據(jù)題意,圓心在直線上,進而求得答案.【詳解】由題意,圓心在直線上,則.故答案為:1.16、【解析】設(shè)切點為,根據(jù)題意,列出點滿足的關(guān)系式即.則點的軌跡是橢圓,然后根據(jù)橢圓的標準方程求點的軌跡方程【詳解】設(shè)動圓和定圓內(nèi)切于點,動點到定點和定圓圓心距離之和恰好等于定圓半徑,即,點的軌跡是以,為兩焦點,長軸長為10的橢圓,,點的軌跡方程為,故答案:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)60°;(2).【解析】(1)建立空間直角坐標系,利用空間向量夾角的坐標公式即可求出異面直線所成角的余弦值,進而結(jié)合異面直線成角的范圍即可求出結(jié)果;(2)建立空間直角坐標系,利用空間向量夾角的坐標公式即可求出求出線面角的正弦值,進而結(jié)合線面角的范圍即可求出結(jié)果;【小問1詳解】以AB,AD,所在直線分別為x,y,z軸建立如圖所示的空間直角坐標系,設(shè)正方體的棱長為,則,,,,所以,,設(shè)與EF所成角的大小為,則,因為異面直線成角的范圍是,所以與所成角的大小為60°【小問2詳解】設(shè)平面的法向量為,與平面所成角為,因為,,所以,,所以,令,得為平面的一個法向量,又因為,所以,所以18、(1);(2).【解析】(1)直線與拋物線相切,所以有,可解得,得拋物線方程.(2)聯(lián)立直線與拋物線有,把目標式坐標化可得與無關(guān),可得.試題解析:(1)聯(lián)立方程有,,有,由于直線與拋物線相切,得,所以.(2)假設(shè)存在滿足條件的點,直線,有,,設(shè),有,,,,當(dāng)時,為定值,所以.19、(1)(2)90(3)平均值69.5;中位數(shù)69.4【解析】(1)由各矩形面積和為1列式即可;(2)由高分頻率乘以600即可;(3)由平均數(shù)與中位數(shù)的估算方法列式即可.【小問1詳解】由題意可知:解得小問2詳解】高分的頻率約為:故高分人數(shù)為:【小問3詳解】平均值為,設(shè)中位數(shù)為x,則故中位數(shù)為69.420、(1).(2)8.【解析】(1)將點代入拋物線方程可解得基本量.(2)設(shè)直線AB為,代入聯(lián)立得關(guān)于的一元二次方程,運用韋達定理,得到關(guān)于的函數(shù)關(guān)系,再求函數(shù)最值.【小問1詳解】當(dāng)l與拋物線的對稱軸垂直時,,,則代入拋物線方程得,所以拋物線方程是【小問2詳解】設(shè)點,,直線AB方程為,聯(lián)立拋物線整理得:,,∴,,有,由A在第一象限,則,即,∴,可得,又O到AB的距離,∴,而,∴,,當(dāng),,單調(diào)遞減;,,單調(diào)遞增;∴的最小值為,此時,.21、(1)(2)過定點,定點為【解析】(1)設(shè)出圓C的標準方程,由題意列出方程從而可得答案.(2)設(shè),,將直線的方程與圓C的方程聯(lián)立,得出韋達定理,由條件可得,從而得出答案.【小問1詳解】設(shè)圓C的標準方程為由題意可得解得,,.故圓C的標準方程為.【小問2詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論