數(shù)學(xué)教案:空間直角坐標(biāo)系_第1頁
數(shù)學(xué)教案:空間直角坐標(biāo)系_第2頁
數(shù)學(xué)教案:空間直角坐標(biāo)系_第3頁
數(shù)學(xué)教案:空間直角坐標(biāo)系_第4頁
數(shù)學(xué)教案:空間直角坐標(biāo)系_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精示范教案eq\o(\s\up7(),\s\do5(整體設(shè)計(jì)))教學(xué)分析教材介紹了空間直角坐標(biāo)系有關(guān)概念.本節(jié)難度不大,可以讓學(xué)生自己閱讀教材,留給學(xué)生足夠的空間.值得注意的是課前讓學(xué)生自己制作空間直角坐標(biāo)系模型,讓學(xué)生經(jīng)歷知識的形成過程.三維目標(biāo)1.掌握空間直角坐標(biāo)系的有關(guān)概念,培養(yǎng)學(xué)生的空間想象能力.2.會(huì)求空間直角坐標(biāo)系中點(diǎn)的坐標(biāo),提高解決問題的能力.重點(diǎn)難點(diǎn)教學(xué)重點(diǎn):在空間直角坐標(biāo)系中確定點(diǎn)的坐標(biāo).教學(xué)難點(diǎn):通過建立適當(dāng)?shù)目臻g直角坐標(biāo)系確定空間點(diǎn)的坐標(biāo),以及相關(guān)應(yīng)用.課時(shí)安排1課時(shí)eq\o(\s\up7(),\s\do5(教學(xué)過程))導(dǎo)入新課設(shè)計(jì)1.大家先來思考這樣一個(gè)問題,飛機(jī)飛行的速度非???,即使民航飛機(jī)速度也非???有很多飛機(jī)時(shí)速在1000km以上,而全世界又這么多飛機(jī),這些飛機(jī)在空中風(fēng)馳電掣,速度是如此的快,豈不是很容易撞機(jī)嗎?但事實(shí)上,飛機(jī)的失事率是極低的,比火車,汽車要低得多,原因是,飛機(jī)都是沿著國際統(tǒng)一劃定的航線飛行,而在劃定某條航線時(shí),不僅要指出航線在地面上的經(jīng)度和緯度,還要指出航線距離地面的高度.為此我們學(xué)習(xí)空間直角坐標(biāo)系.設(shè)計(jì)2.我們知道數(shù)軸上的任意一點(diǎn)M都可用對應(yīng)的一個(gè)實(shí)數(shù)x表示,建立了平面直角坐標(biāo)系后,平面上任意一點(diǎn)M都可用對應(yīng)的一對有序?qū)崝?shù)(x,y)表示.那么假設(shè)我們建立一個(gè)空間直角坐標(biāo)系時(shí),空間中的任意一點(diǎn)是否可用對應(yīng)的有序?qū)崝?shù)組(x,y,z)表示出來呢?為此我們學(xué)習(xí)空間直角坐標(biāo)系.推進(jìn)新課eq\b\lc\\rc\(\a\vs4\al\co1(新知探究))eq\b\lc\\rc\(\a\vs4\al\co1(提出問題))1.在初中,我們學(xué)過數(shù)軸,那么什么是數(shù)軸?決定數(shù)軸的因素有哪些?數(shù)軸上的點(diǎn)怎樣表示?2.在初中,我們學(xué)過平面直角坐標(biāo)系,那么如何建立平面直角坐標(biāo)系?決定平面直角坐標(biāo)系的因素有哪些?平面直角坐標(biāo)系上的點(diǎn)怎樣表示?3.閱讀教材,在空間怎樣確定點(diǎn)的位置?4.閱讀教材,在空間直角坐標(biāo)系中怎樣確定點(diǎn)的坐標(biāo)?5.閱讀教材,坐標(biāo)平面和坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)?6.閱讀教材,說出八個(gè)卦限.討論結(jié)果:1.在初中,我們學(xué)過數(shù)軸是規(guī)定了原點(diǎn)、正方向和單位長度的直線.決定數(shù)軸的因素有原點(diǎn)、正方向和單位長度.這是數(shù)軸的三要素.?dāng)?shù)軸上的點(diǎn)可用與這個(gè)點(diǎn)對應(yīng)的實(shí)數(shù)x來表示.2.在初中,我們學(xué)過平面直角坐標(biāo)系,平面直角坐標(biāo)系是以一點(diǎn)為原點(diǎn)O,過原點(diǎn)O分別作兩條互相垂直的數(shù)軸Ox和Oy,xOy稱平面直角坐標(biāo)系,平面直角坐標(biāo)系具有以下特征:兩條數(shù)軸互相垂直;原點(diǎn)重合;通常取向右、向上為正方向;單位長度一般取相同的.平面直角坐標(biāo)系上的點(diǎn)用它對應(yīng)的橫、縱坐標(biāo)表示,括號里橫坐標(biāo)寫在縱坐標(biāo)的前面,它們是一對有序?qū)崝?shù)(x,y).3.為了確定空間點(diǎn)的位置,我們在平面直角坐標(biāo)系xOy的基礎(chǔ)上,通過原點(diǎn)O,再作一條數(shù)軸z,使它與x軸,y軸都垂直(如上圖),這樣它們中的任意兩條都互相垂直;軸的方向通常這樣選擇:從z軸的正方向看,x軸的正半軸沿逆時(shí)針方向轉(zhuǎn)90°能與y軸的正半軸重合.這時(shí),我們說在空間建立了一個(gè)空間直角坐標(biāo)系Oxyz,O叫做坐標(biāo)原點(diǎn).4.如上圖所示,過點(diǎn)P作一個(gè)平面平行于平面yOz(這樣構(gòu)造的平面同樣垂直于x軸),這個(gè)平面與x軸的交點(diǎn)記為Pz,它在x軸上的坐標(biāo)為x(圖中為2),這個(gè)數(shù)x就叫做點(diǎn)P的x坐標(biāo).過點(diǎn)P作一個(gè)平面平行于平面xOz(垂直于y軸),這個(gè)平面與y軸的交點(diǎn)記為Py,它在y軸上的坐標(biāo)為y(圖中為3),這個(gè)數(shù)y就叫做點(diǎn)P的y坐標(biāo).過點(diǎn)P作一個(gè)平面平行于坐標(biāo)平面xOy(垂直于z軸),這個(gè)平面與z軸的交點(diǎn)記為Pz,它在z軸上的坐標(biāo)為z(圖中為5),這個(gè)數(shù)z就叫做點(diǎn)P的z坐標(biāo).這樣,我們對空間中的一個(gè)點(diǎn),定義了三個(gè)實(shí)數(shù)的有序數(shù)組作為它的坐標(biāo),記作P(x,y,z)(圖中為P(2,3,5)).其中x,y,z也可稱為點(diǎn)P的坐標(biāo)分量.反之,任意給定三個(gè)實(shí)數(shù)的有序數(shù)組(x,y,z),就能夠確定空間一個(gè)點(diǎn)的位置與之對應(yīng).為此,按照剛才作圖的相反順序,在坐標(biāo)軸上分別作出點(diǎn)Px,Py,Pz,使它們在x軸、y軸、z軸上的坐標(biāo)分別是x,y,z。再分別通過這些點(diǎn)作平面平行于平面yOz,xOz,xOy,這三個(gè)平面的交點(diǎn),就是所求的點(diǎn)P.這樣,在空間任意一點(diǎn)與三個(gè)實(shí)數(shù)的有序數(shù)組(點(diǎn)的坐標(biāo))之間,我們就建立起一一對應(yīng)關(guān)系.每兩條坐標(biāo)軸分別確定的平面yOz,xOz,xOy,叫做坐標(biāo)平面.5.xOy平面(通過x軸和y軸的平面)是坐標(biāo)形如(x,y,0)的點(diǎn)構(gòu)成的點(diǎn)集,其中x,y為任意的實(shí)數(shù);xOz平面(通過x軸和z軸的平面)是坐標(biāo)形如(x,0,z)的點(diǎn)構(gòu)成的點(diǎn)集,其中x,z為任意的實(shí)數(shù);yOz平面(通過y軸和z軸的平面)是坐標(biāo)形如(0,y,z)的點(diǎn)構(gòu)成的點(diǎn)集,其中y,z為任意的數(shù);x軸是坐標(biāo)形如(x,0,0)的點(diǎn)構(gòu)成的點(diǎn)集,其中x為任意實(shí)數(shù);y軸是坐標(biāo)形如(0,y,0)的點(diǎn)構(gòu)成的點(diǎn)集,其中y為任意實(shí)數(shù);z軸是坐標(biāo)形如(0,0,z)的點(diǎn)構(gòu)成的點(diǎn)集,其中z為任意實(shí)數(shù).通過點(diǎn)P作平行于坐標(biāo)平面的平面與坐標(biāo)軸的交點(diǎn)Px,Py,Pz,其過程也就是作點(diǎn)P在坐標(biāo)軸上的投影.即,從點(diǎn)P向坐標(biāo)軸引垂線,它們的垂足分別為Px,Py,Pz.所以點(diǎn)P的空間坐標(biāo)為點(diǎn)P在坐標(biāo)軸上的投影在這些坐標(biāo)軸上的坐標(biāo).6.三個(gè)坐標(biāo)平面把空間分為八部分,每一部分都稱為一個(gè)卦限.在坐標(biāo)平面xOy上方,分別對應(yīng)該坐標(biāo)平面上四個(gè)象限的卦限,稱為第Ⅰ、第Ⅱ、第Ⅲ、第Ⅳ卦限;在下方的卦限稱為第Ⅴ、第Ⅵ、第Ⅶ、第Ⅷ卦限(如下圖).在每個(gè)卦限內(nèi),點(diǎn)的坐標(biāo)各分量的符號是不變的.例如在第Ⅰ卦限,三個(gè)坐標(biāo)分量x,y,z都為正數(shù);在第Ⅱ卦限,x為負(fù)數(shù),y,z都為正數(shù)……eq\b\lc\\rc\(\a\vs4\al\co1(應(yīng)用示例))思路1例1如下圖,點(diǎn)P′在x軸正半軸上,|OP′|=2,P′P在xOz平面上,且垂直于x軸,|P′P|=1.求點(diǎn)P′和P的坐標(biāo).解:點(diǎn)P′的坐標(biāo)為(2,0,0),點(diǎn)P的坐標(biāo)為(2,0,1).變式訓(xùn)練已知點(diǎn)P′在x軸正半軸上,|OP′|=2,PP′在xOz平面上,且垂直于x軸,|PP′|=1,求點(diǎn)P′和P的坐標(biāo).解:顯然,P′在x軸上,它的坐標(biāo)為(2,0,0).若點(diǎn)P在xOy平面上方,則點(diǎn)P的坐標(biāo)為(2,0,1).若點(diǎn)P在xOy平面下方,則點(diǎn)P的坐標(biāo)為(2,0,-1).例2在空間直角坐標(biāo)系中作出點(diǎn)P(3,-2,4).分析:已知點(diǎn)P(x,y,z),可以先確定P′(x,y,0)在xOy平面上的位置.|P′P|=|z|,如果z=0,則點(diǎn)P即點(diǎn)P′;如果z〉0,則點(diǎn)P與z軸的正半軸在xOy平面的同側(cè);如果z〈0,則點(diǎn)P與z軸的負(fù)半軸在xOy平面的同側(cè),即可依此方法作出P點(diǎn).解:先確定P′(3,-2,0)在xOy平面上的位置.因?yàn)辄c(diǎn)P的z坐標(biāo)為4,則|P′P|=4,且點(diǎn)P和z軸的正半軸在xOy平面的同側(cè),這樣就確定了點(diǎn)P在空間直角坐標(biāo)系中的位置,如下圖.變式訓(xùn)練在同一個(gè)空間直角坐標(biāo)系中畫出下列各點(diǎn):A(0,0,0),B(3,0,0),C(3,2,0),D(0,2,0),A′(0,0,1),B′(3,0,1),C′(3,2,1),D′(0,2,1).解:在空間直角坐標(biāo)系中,畫出以上各點(diǎn),如下圖,它們剛好是一個(gè)長方體的八個(gè)頂點(diǎn).思路2例1如下圖,長方體OABC—D′A′B′C′中,|OA|=3,|OC|=4,|OD′|=2。寫出D′,C,A′,B′四點(diǎn)的坐標(biāo).分析:要寫出點(diǎn)的坐標(biāo),首先要確定點(diǎn)的位置,再根據(jù)各自坐標(biāo)的含義和特點(diǎn)寫出.D′在z軸上,因此它的橫縱坐標(biāo)都為0;C在y軸上,因此它的橫豎坐標(biāo)都為0;A′是zOx面上的點(diǎn),y=0;B′不在坐標(biāo)面上,三個(gè)坐標(biāo)都要求.解:D′在z軸上,而|OD′|=2,因此它的豎坐標(biāo)為2,橫縱坐標(biāo)都為0,因此D′的坐標(biāo)是(0,0,2).同理,C的坐標(biāo)為(0,4,0).A′是zOx平面上的點(diǎn),y=0,A′的橫坐標(biāo)就是|OA|=3,A′的豎坐標(biāo)就是|OD′|=2,所以A′的坐標(biāo)就是(3,0,2).點(diǎn)B′在yOx平面上的射影是點(diǎn)B,因此它的橫坐標(biāo)與縱坐標(biāo)與B點(diǎn)的橫坐標(biāo)與縱坐標(biāo)相同,在yOx平面上B點(diǎn)的橫坐標(biāo)為3、縱坐標(biāo)為4,點(diǎn)B′在z軸上的射影是D′,它的豎坐標(biāo)與D′的豎坐標(biāo)相同,點(diǎn)D′的豎坐標(biāo)為2,所以點(diǎn)B′的坐標(biāo)是(3,4,2).點(diǎn)評:能準(zhǔn)確地確定空間任意一點(diǎn)的坐標(biāo)是學(xué)好空間直角坐標(biāo)系的基礎(chǔ),一定掌握如下方法,過點(diǎn)M作三個(gè)平面分別垂直于x軸,y軸和z軸,確定x,y和z,同時(shí)掌握一些特殊的點(diǎn)的坐標(biāo)特征.變式訓(xùn)練如下圖,在正方體OABC—D′A′B′C′中,|OA|=2。寫出D′、C′、A′、B′四點(diǎn)的坐標(biāo).解:D′在z軸上,且OD′=2,它的豎坐標(biāo)是2;它的橫坐標(biāo)x與縱坐標(biāo)y都是零,所以D′的坐標(biāo)是(0,0,2).點(diǎn)C的縱坐標(biāo)是2。它的橫坐標(biāo)x與豎坐標(biāo)z都是零,所以點(diǎn)C的坐標(biāo)是(0,2,0).同理,點(diǎn)A′的坐標(biāo)是(2,0,2).點(diǎn)B′在xOy平面上的射影是B,因此它的橫坐標(biāo)x與縱坐標(biāo)y同點(diǎn)B的橫坐標(biāo)x與縱坐標(biāo)y相同.在xOy平面上,點(diǎn)B橫坐標(biāo)x=2,縱坐標(biāo)y=2;點(diǎn)B′在z軸上的射影是D′,它的豎坐標(biāo)與點(diǎn)D′的豎坐標(biāo)相同,點(diǎn)D′的豎坐標(biāo)z=2.所以點(diǎn)B′的坐標(biāo)是(2,2,2).例2如下圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是BB1和D1B1的中點(diǎn),棱長為1,求E,F(xiàn)點(diǎn)的坐標(biāo).解:方法一:從圖中可以看出E點(diǎn)在xOy平面上的射影為B,而B點(diǎn)的坐標(biāo)為(1,1,0),E點(diǎn)的豎坐標(biāo)為eq\f(1,2),所以E點(diǎn)的坐標(biāo)為(1,1,eq\f(1,2));F點(diǎn)在xOy平面上的射影為G,而G點(diǎn)的坐標(biāo)為(eq\f(1,2),eq\f(1,2),0),F(xiàn)點(diǎn)的豎坐標(biāo)為1,所以F點(diǎn)的坐標(biāo)為(eq\f(1,2),eq\f(1,2),1).方法二:從圖中條件可以得到B1(1,1,1),D1(0,0,1),B(1,1,0).E為BB1的中點(diǎn),F為D1B1的中點(diǎn),由中點(diǎn)坐標(biāo)公式得E點(diǎn)的坐標(biāo)為(eq\f(1+1,2),eq\f(1+1,2),eq\f(1+0,2))=(1,1,eq\f(1,2)),F(xiàn)點(diǎn)的坐標(biāo)為(eq\f(1+0,2),eq\f(1+0,2),eq\f(1+1,2))=(eq\f(1,2),eq\f(1,2),1).點(diǎn)評:(1)平面上的中點(diǎn)坐標(biāo)公式可以推廣到空間,即設(shè)A(x1,y1,z1),B(x2,y2,z2),則AB的中點(diǎn)P(eq\f(x1+x2,2),eq\f(y1+y2,2),eq\f(z1+z2,2));(2)熟記坐標(biāo)軸上的點(diǎn)的坐標(biāo)和坐標(biāo)平面上的點(diǎn)的坐標(biāo)特征.變式訓(xùn)練1.在上題中求B1(1,1,1)點(diǎn)關(guān)于平面xOy對稱的點(diǎn)的坐標(biāo).解:設(shè)所求的點(diǎn)為B0(x0,y0,z0),由于B為B0B1的中點(diǎn),所以eq\b\lc\{\rc\(\a\vs4\al\co1(1=\f(1+x0,2),,1=\f(1+y0,2),,0=\f(1+z0,2).))解得eq\b\lc\{\rc\(\a\vs4\al\co1(x0=1,,y0=1,,z0=-1.))所以B0(1,1,-1).2.在上題中求B1(1,1,1)點(diǎn)關(guān)于z軸對稱的點(diǎn)的坐標(biāo).解:設(shè)所求的點(diǎn)為P(x0,y0,z0),由于D1為PB1的中點(diǎn),因?yàn)镈1(0,0,1),所以eq\b\lc\{\rc\(\a\vs4\al\co1(0=\f(1+x0,2),,0=\f(1+y0,2),,1=\f(1+z0,2)。))解之,得eq\b\lc\{\rc\(\a\vs4\al\co1(x0=-1,,y0=-1,,z0=1。))所以P(-1,-1,1).eq\b\lc\\rc\(\a\vs4\al\co1(知能訓(xùn)練))1.有下列敘述,其中正確敘述的個(gè)數(shù)為()①在空間直角坐標(biāo)系中,在Oy軸上的點(diǎn)的坐標(biāo)一定可記為(0,b,0);②在空間直角坐標(biāo)系中,在yOz平面上的點(diǎn)的坐標(biāo)一定可記為(0,b,c);③在空間直角坐標(biāo)系中,在Oz軸上的點(diǎn)的坐標(biāo)一定可記為(0,0,c);④在空間直角坐標(biāo)系中,在zOx平面上的點(diǎn)的坐標(biāo)一定可記為(a,b,c).A.1B.2C.3D.4答案:C2.在空間直角坐標(biāo)系中的點(diǎn)P(a,b,c),有下列敘述:①點(diǎn)P(a,b,c)關(guān)于橫軸(x軸)的對稱點(diǎn)是P1(a,-b,c);②點(diǎn)P(a,b,c)關(guān)于yOz坐標(biāo)平面的對稱點(diǎn)為P2(a,-b,-c);③點(diǎn)P(a,b,c)關(guān)于縱軸(y軸)的對稱點(diǎn)是P3(a,-b,c);④點(diǎn)P(a,b,c)關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn)為P4(-a,-b,-c).其正確敘述的個(gè)數(shù)為()A.3B.2C.1D.0答案:C3.在空間直角坐標(biāo)系中的點(diǎn)P(x,y,z)關(guān)于①坐標(biāo)原點(diǎn);②橫軸(x軸);③縱軸(y軸);④豎軸(z軸);⑤xOy坐標(biāo)平面;⑥yOz坐標(biāo)平面;⑦zOx坐標(biāo)平面的對稱點(diǎn)的坐標(biāo)是什么?答案:根據(jù)平面直角坐標(biāo)系的點(diǎn)的對稱方法結(jié)合中點(diǎn)坐標(biāo)公式可知:點(diǎn)P(x,y,z)關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn)為P1(-x,-y,-z);點(diǎn)P(x,y,z)關(guān)于橫軸(x軸)的對稱點(diǎn)為P2(x,-y,-z);點(diǎn)P(x,y,z)關(guān)于縱軸(y軸)的對稱點(diǎn)為P3(-x,y,-z);點(diǎn)P(x,y,z)關(guān)于豎軸(z軸)的對稱點(diǎn)為P4(-x,-y,z);點(diǎn)P(x,y,z)關(guān)于xOy坐標(biāo)平面的對稱點(diǎn)為P5(x,y,-z);點(diǎn)P(x,y,z)關(guān)于yOz坐標(biāo)平面的對稱點(diǎn)為P6(-x,y,z);點(diǎn)P(x,y,z)關(guān)于zOx坐標(biāo)平面的對稱點(diǎn)為P7(x,-y,z).點(diǎn)評:其中記憶的方法為:關(guān)于誰誰不變,其余的相反.如關(guān)于橫軸(x軸)的對稱點(diǎn),橫坐標(biāo)不變,縱坐標(biāo)、豎坐標(biāo)變?yōu)樵瓉淼南喾磾?shù);關(guān)于xOy坐標(biāo)平面的對稱點(diǎn),橫坐標(biāo)、縱坐標(biāo)不變,豎坐標(biāo)相反.eq\b\lc\\rc\(\a\vs4\al\co1(拓展提升))結(jié)晶體的基本單位稱為晶胞,左下圖是食鹽晶胞的示意圖(可看成是八個(gè)棱長為eq\f(1,2)的小正方體堆積成的正方體),其中用空白點(diǎn)表示代表鈉原子,黑點(diǎn)代表氯原子.如右下圖,建立空間直角坐標(biāo)系Oxyz后,試寫出全部鈉原子所在位置的坐標(biāo).解:把圖中的鈉原子分成下、中、上三層來寫它們所在位置的坐標(biāo).下層的原子全部在xOy平面上,它們所在位置的z坐標(biāo)全是0,所以這五個(gè)鈉原子所在位置的坐標(biāo)分別是(0,0,0)、(1,0,0)、(1,1,0)、(0,1,0)、(eq\f(1,2),eq\f(1,2),0).中層的原子所在的平面平行于xOy平面,與z軸交點(diǎn)的z坐標(biāo)為eq\f(1,2);所以,這四個(gè)鈉原子所在位置的坐標(biāo)分別是(eq\f(1,2),0,eq\f(1,2))、(1,eq\f(1,2),eq\f(1,2))、(eq\f(1,2),1,eq\f(1,2))、(0,eq\f(1,2),eq\f(1,2));上層的原子所在的平面平行于xOy平面,與z軸交點(diǎn)的z坐標(biāo)為1,所以這五個(gè)鈉原子的坐標(biāo)分別是(0,0,1),(1,0,1),(1,1,1),(0,1,1),(eq\f(1,2),eq\f(1,2),1).eq\b\lc\\rc\(\a\vs4\al\co1(課堂小結(jié)))本節(jié)學(xué)習(xí)了:1.空間直角坐標(biāo)系及坐標(biāo);2.中點(diǎn)公式:P1(x1,y1,z1),P2(x2,y2,z2),則P1P2中點(diǎn)M的坐標(biāo)為(eq\f(x1+x2,2),eq\f(y1+y2,2),eq\f(z1+z2,2)).eq\b\lc\\rc\(\a\vs4\al\co1(作業(yè)))本節(jié)練習(xí)A2題.eq\o(\s\up

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論