上海市崇明縣2024屆中考數(shù)學仿真試卷含解析_第1頁
上海市崇明縣2024屆中考數(shù)學仿真試卷含解析_第2頁
上海市崇明縣2024屆中考數(shù)學仿真試卷含解析_第3頁
上海市崇明縣2024屆中考數(shù)學仿真試卷含解析_第4頁
上海市崇明縣2024屆中考數(shù)學仿真試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

上海市崇明縣2024屆中考數(shù)學仿真試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若關于x的分式方程的解為非負數(shù),則a的取值范圍是()A.a(chǎn)≥1 B.a(chǎn)>1 C.a(chǎn)≥1且a≠4 D.a(chǎn)>1且a≠42.如圖,在正方形網(wǎng)格中建立平面直角坐標系,若A0,2,BA.1,-2 B.1,-1 C.2,-1 D.2,13.給出下列各數(shù)式,①②③④計算結果為負數(shù)的有()A.1個 B.2個 C.3個 D.4個4.如圖,四邊形ABCD是正方形,點P,Q分別在邊AB,BC的延長線上且BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結論:①AQ⊥DP;②△OAE∽△OPA;③當正方形的邊長為3,BP=1時,cos∠DFO=,其中正確結論的個數(shù)是()A.0 B.1 C.2 D.35.在圍棋盒中有x顆白色棋子和y顆黑色棋子,從盒中隨機取出一顆棋子,取得白色棋子的概率是,如再往盒中放進3顆黑色棋子,取得白色棋子的概率變?yōu)?,則原來盒里有白色棋子()A.1顆 B.2顆 C.3顆 D.4顆6.二次函數(shù)(a、b、c是常數(shù),且a≠0)的圖象如圖所示,下列結論錯誤的是()A.4ac<b2 B.a(chǎn)bc<0 C.b+c>3a D.a(chǎn)<b7.如圖數(shù)軸的A、B、C三點所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點O與A、B的距離分別為4、1,則關于O的位置,下列敘述何者正確?()A.在A的左邊 B.介于A、B之間C.介于B、C之間 D.在C的右邊8.在如圖的2016年6月份的日歷表中,任意框出表中豎列上三個相鄰的數(shù),這三個數(shù)的和不可能是()A.27 B.51 C.69 D.729.關于x的方程12x=kA.0或1210.式子有意義的x的取值范圍是()A.且x≠1 B.x≠1 C. D.且x≠1二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在平面直角坐標系中,四邊形OABC是邊長為2的正方形,頂點A、C分別在x軸、y軸的正半軸上,點Q在對角線OB上,若OQ=OC,則點Q的坐標為_______.12.方程=1的解是_____.13.觀察下列圖形:它們是按一定的規(guī)律排列的,依照此規(guī)律,第n個圖形共有___個★.14.如圖,在平面直角坐標系中,將矩形AOCD沿直線AE折疊(點E在邊DC上),折疊后頂點D恰好落在邊OC上的點F處.若點D的坐標為(10,8),則點E的坐標為.15.某種商品因換季準備打折出售,如果按定價的七五折出售將賠25元,而按定價的九折出售將賺20元,則商品的定價是______元16.若分式方程的解為正數(shù),則a的取值范圍是______________.17.已知點(﹣1,m)、(2,n)在二次函數(shù)y=ax2﹣2ax﹣1的圖象上,如果m>n,那么a____0(用“>”或“<”連接).三、解答題(共7小題,滿分69分)18.(10分)如圖,在△OAB中,OA=OB,C為AB中點,以O為圓心,OC長為半徑作圓,AO與⊙O交于點E,OB與⊙O交于點F和D,連接EF,CF,CF與OA交于點G(1)求證:直線AB是⊙O的切線;(2)求證:△GOC∽△GEF;(3)若AB=4BD,求sinA的值.19.(5分)某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球多15元,王老師從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?根據(jù)消費者需求,該網(wǎng)店決定用不超過8780元購進甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進價為50元,乙種羽毛球每筒的進價為40元.①若設購進甲種羽毛球m筒,則該網(wǎng)店有哪幾種進貨方案?②若所購進羽毛球均可全部售出,請求出網(wǎng)店所獲利潤W(元)與甲種羽毛球進貨量m(筒)之間的函數(shù)關系式,并說明當m為何值時所獲利潤最大?最大利潤是多少?20.(8分)截至2018年5月4日,中歐班列(鄭州)去回程開行共計1191班,我省與歐洲各國經(jīng)貿(mào)往來日益頻繁,某歐洲客商準備在河南采購一批特色商品,經(jīng)調(diào)查,用1600元采購A型商品的件數(shù)是用1000元采購B型商品的件數(shù)的2倍,一件A型商品的進價比一件B型商品的進價少20元,已知A型商品的售價為160元,B型商品的售價為240元,已知該客商購進甲乙兩種商品共200件,設其中甲種商品購進x件,該客商售完這200件商品的總利潤為y元(1)求A、B型商品的進價;(2)該客商計劃最多投入18000元用于購買這兩種商品,則至少要購進多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎上,實際進貨時,生產(chǎn)廠家對甲種商品的出廠價下調(diào)a元(50<a<70)出售,且限定商場最多購進120件,若客商保持同種商品的售價不變,請你根據(jù)以上信息及(2)中的條件,設計出使該客商獲得最大利潤的進貨方案.21.(10分)如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺的A處測得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測得兩建筑物之間的距離BC是28米,請你幫助小明求出建筑物CD的高度(精確到1米).22.(10分)先化簡,再求值:,其中x=-1.23.(12分)如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.求證:BC是⊙O的切線;若⊙O的半徑為6,BC=8,求弦BD的長.24.(14分)如圖,已知直線l與⊙O相離,OA⊥l于點A,交⊙O于點P,OA=5,AB與⊙O相切于點B,BP的延長線交直線l于點C.(1)求證:AB=AC;(2)若,求⊙O的半徑.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題分析:分式方程去分母轉化為整式方程,表示出整式方程的解,根據(jù)解為非負數(shù)及分式方程分母不為1求出a的范圍即可.解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由題意得:≥1且≠2,解得:a≥1且a≠4,故選C.點睛:此題考查了分式方程的解,需注意在任何時候都要考慮分母不為1.2、C【解析】

根據(jù)A點坐標即可建立平面直角坐標.【詳解】解:由A(0,2),B(1,1)可知原點的位置,

建立平面直角坐標系,如圖,

∴C(2,-1)

故選:C.【點睛】本題考查平面直角坐標系,解題的關鍵是建立直角坐標系,本題屬于基礎題型.3、B【解析】∵①;②;③;④;∴上述各式中計算結果為負數(shù)的有2個.故選B.4、C【解析】

由四邊形ABCD是正方形,得到AD=BC,根據(jù)全等三角形的性質得到∠P=∠Q,根據(jù)余角的性質得到AQ⊥DP;故①正確;根據(jù)勾股定理求出直接用余弦可求出.【詳解】詳解:∵四邊形ABCD是正方形,∴AD=BC,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,∴△DAP≌△ABQ,∴∠P=∠Q,∵∴∴∴AQ⊥DP;故①正確;②無法證明,故錯誤.∵BP=1,AB=3,∴∴故③正確,故選C.【點睛】考查正方形的性質,三角形全等的判定與性質,勾股定理,銳角三角函數(shù)等,綜合性比較強,對學生要求較高.5、B【解析】試題解析:由題意得,解得:.故選B.6、D【解析】

根據(jù)二次函數(shù)的圖象與性質逐一判斷即可求出答案.【詳解】由圖象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故A正確;∵拋物線開口向上,∴a<0,∵拋物線與y軸的負半軸,∴c<0,∵拋物線對稱軸為x=<0,∴b<0,∴abc<0,故B正確;∵當x=1時,y=a+b+c>0,∵4a<0,∴a+b+c>4a,∴b+c>3a,故C正確;∵當x=﹣1時,y=a﹣b+c>0,∴a﹣b+c>c,∴a﹣b>0,∴a>b,故D錯誤;故選D.考點:本題主要考查圖象與二次函數(shù)系數(shù)之間的關系,會利用對稱軸的范圍求2a與b的關系,以及二次函數(shù)與方程、不等式之間的轉換,根的判別式的熟練運用.7、C【解析】分析:由A、B、C三點表示的數(shù)之間的關系結合三點在數(shù)軸上的位置即可得出b=a+3,c=b+5,再根據(jù)原點O與A、B的距離分別為1、1,即可得出a=±1、b=±1,結合a、b、c間的關系即可求出a、b、c的值,由此即可得出結論.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原點O與A、B的距離分別為1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴點O介于B、C點之間.故選C.點睛:本題考查了數(shù)值以及絕對值,解題的關鍵是確定a、b、c的值.本題屬于基礎題,難度不大,解決該題型題目時,根據(jù)數(shù)軸上點的位置關系分別找出各點代表的數(shù)是關鍵.8、D【解析】設第一個數(shù)為x,則第二個數(shù)為x+7,第三個數(shù)為x+1.列出三個數(shù)的和的方程,再根據(jù)選項解出x,看是否存在.解:設第一個數(shù)為x,則第二個數(shù)為x+7,第三個數(shù)為x+1故三個數(shù)的和為x+x+7+x+1=3x+21當x=16時,3x+21=69;當x=10時,3x+21=51;當x=2時,3x+21=2.故任意圈出一豎列上相鄰的三個數(shù)的和不可能是3.故選D.“點睛“此題主要考查了一元一次方程的應用,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系列出方程,再求解.9、A【解析】方程兩邊同乘2x(x+3),得x+3=2kx,(2k-1)x=3,∵方程無解,∴當整式方程無解時,2k-1=0,k=12當分式方程無解時,①x=0時,k無解,②x=-3時,k=0,∴k=0或12故選A.10、A【解析】根據(jù)二次根式被開方數(shù)必須是非負數(shù)和分式分母不為0的條件,要使在實數(shù)范圍內(nèi)有意義,必須且.故選A.二、填空題(共7小題,每小題3分,滿分21分)11、(2,2)【解析】如圖,過點Q作QD⊥OA于點D,∴∠QDO=90°.∵四邊形OABC是正方形,且邊長為2,OQ=OC,∴∠QOA=45°,OQ=OC=2,∴△ODQ是等腰直角三角形,∴OD=OQ=22=2∴點Q的坐標為(212、x=3【解析】去分母得:x﹣1=2,解得:x=3,經(jīng)檢驗x=3是分式方程的解,故答案為3.【點睛】本題主要考查解分式方程,解分式方程的思路是將分式方程化為整式方程,然后求解.去分母后解出的結果須代入最簡公分母進行檢驗,結果為零,則原方程無解;結果不為零,則為原方程的解.13、【解析】

分別求出第1個、第2個、第3個、第4個圖形中★的個數(shù),得到第5個圖形中★的個數(shù),進而找到規(guī)律,得出第n個圖形中★的個數(shù),即可求解.【詳解】第1個圖形中有1+3×1=4個★,

第2個圖形中有1+3×2=7個★,

第3個圖形中有1+3×3=10個★,

第4個圖形中有1+3×4=13個★,

第5個圖形中有1+3×5=16個★,

第n個圖形中有1+3×n=(3n+1)個★.故答案是:1+3n.【點睛】考查了規(guī)律型:圖形的變化類;根據(jù)圖形中變化的量和n的關系與不變的量得到圖形中★的個數(shù)與n的關系是解決本題的關鍵.14、(10,3)【解析】

根據(jù)折疊的性質得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后設EC=x,則EF=DE=8-x,CF=10-6=4,根據(jù)勾股定理列方程求出EC可得點E的坐標.【詳解】∵四邊形AOCD為矩形,D的坐標為(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折疊,使D落在BC上的點F處,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10?6=4,設EC=x,則DE=EF=8?x,在Rt△CEF中,EF2=EC2+FC2,即(8?x)2=x2+42,解得x=3,即EC的長為3.∴點E的坐標為(10,3).15、300【解析】

設成本為x元,標價為y元,根據(jù)已知條件可列二元一次方程組即可解出定價.【詳解】設成本為x元,標價為y元,依題意得,解得故定價為300元.【點睛】此題主要考查二元一次方程組的應用,解題的關鍵是根據(jù)題意列出方程再求解.16、a<8,且a≠1【解析】分式方程去分母得:x=2x-8+a,解得:x=8-a,根據(jù)題意得:8-a>2,8-a≠1,解得:a<8,且a≠1.故答案為:a<8,且a≠1.【點睛】分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,根據(jù)分式方程解為正數(shù)求出a的范圍即可.此題考查了分式方程的解,需注意在任何時候都要考慮分母不為2.17、>;【解析】

∵=a(x-1)2-a-1,∴拋物線對稱軸為:x=1,由拋物線的對稱性,點(-1,m)、(2,n)在二次函數(shù)的圖像上,∵|?1?1|>|2?1|,且m>n,∴a>0.故答案為>三、解答題(共7小題,滿分69分)18、(1)見解析;(2)見解析;(3).【解析】

(1)利用等腰三角形的性質,證明OC⊥AB即可;

(2)證明OC∥EG,推出△GOC∽△GEF即可解決問題;

(3)根據(jù)勾股定理和三角函數(shù)解答即可.【詳解】證明:(1)∵OA=OB,AC=BC,∴OC⊥AB,∴⊙O是AB的切線.(2)∵OA=OB,AC=BC,∴∠AOC=∠BOC,∵OE=OF,∴∠OFE=∠OEF,∵∠AOB=∠OFE+∠OEF,∴∠AOC=∠OEF,∴OC∥EF,∴△GOC∽△GEF,∴,∵OD=OC,∴OD?EG=OG?EF.(3)∵AB=4BD,∴BC=2BD,設BD=m,BC=2m,OC=OD=r,在Rt△BOC中,∵OB2=OC2+BC2,即(r+m)2=r2+(2m)2,解得:r=1.5m,OB=2.5m,∴sinA=sinB=.【點睛】考查圓的綜合題,考查切線的判定、等腰三角形的性質、平行線的性質、勾股定理等知識,解題的關鍵是靈活運用所學知識解決問題.19、(1)該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)①進貨方案有3種,具體見解析;②當m=78時,所獲利潤最大,最大利潤為1390元.【解析】【分析】(1)設甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,由條件可列方程組,則可求得答案;(2)①設購進甲種羽毛球m筒,則乙種羽毛球為(200﹣m)筒,由條件可得到關于m的不等式組,則可求得m的取值范圍,且m為整數(shù),則可求得m的值,即可求得進貨方案;②用m可表示出W,可得到關于m的一次函數(shù),利用一次函數(shù)的性質可求得答案.【詳解】(1)設甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,根據(jù)題意可得,解得,答:該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)①若購進甲種羽毛球m筒,則乙種羽毛球為(200﹣m)筒,根據(jù)題意可得,解得75<m≤78,∵m為整數(shù),∴m的值為76、77、78,∴進貨方案有3種,分別為:方案一,購進甲種羽毛球76筒,乙種羽毛球為124筒,方案二,購進甲種羽毛球77筒,乙種羽毛球為123筒,方案一,購進甲種羽毛球78筒,乙種羽毛球為122筒;②根據(jù)題意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W隨m的增大而增大,且75<m≤78,∴當m=78時,W最大,W最大值為1390,答:當m=78時,所獲利潤最大,最大利潤為1390元.【點睛】本題考查了二元一次方程組的應用、一元一次不等式組的應用、一次函數(shù)的應用,弄清題意找準等量關系列出方程組、找準不等關系列出不等式組、找準各量之間的數(shù)量關系列出函數(shù)解析式是解題的關鍵.20、(1)80,100;(2)100件,22000元;(3)答案見解析.【解析】

(1)先設A型商品的進價為a元/件,求得B型商品的進價為(a+20)元/件,由題意得等式,解得a=80,再檢驗a是否符合條件,得到答案.(2)先設購機A型商品x件,則由題意可得到等式80x+100(200﹣x)≤18000,解得,x≥100;再設獲得的利潤為w元,由題意可得w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,當x=100時代入w=﹣60x+28000,從而得答案.(3)設獲得的利潤為w元,由題意可得w(a﹣60)x+28000,分類討論:當50<a<60時,當a=60時,當60<a<70時,各個階段的利潤,得出最大值.【詳解】解:(1)設A型商品的進價為a元/件,則B型商品的進價為(a+20)元/件,,解得,a=80,經(jīng)檢驗,a=80是原分式方程的解,∴a+20=100,答:A、B型商品的進價分別為80元/件、100元/件;(2)設購機A型商品x件,80x+100(200﹣x)≤18000,解得,x≥100,設獲得的利潤為w元,w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,∴當x=100時,w取得最大值,此時w=22000,答:該客商計劃最多投入18000元用于購買這兩種商品,則至少要購進100件甲商品,若售完這些商品,則商場可獲得的最大利潤是22000元;(3)w=(160﹣80+a)x+(240﹣100)(200﹣x)=(a﹣60)x+28000,∵50<a<70,∴當50<a<60時,a﹣60<0,y隨x的增大而減小,則甲100件,乙100件時利潤最大;當a=60時,w=28000,此時甲乙只要是滿足條件的整數(shù)即可;當60<a<70時,a﹣60>0,y隨x的增大而增大,則甲120件,乙80件時利潤最大.【點睛】本題考察一次函數(shù)的應用及一次不等式的應用,屬于中檔題,難度不大.21、39米【解析】

過點A作AE⊥CD,垂足為點E,在Rt△ADE中,利用三角函數(shù)求出的長,在Rt△ACE中,求出的長即可得.【詳解】解:過點A作AE⊥CD,垂足為點E,由題意得,AE=BC=28,∠EAD=25°,∠EAC=43°,在Rt△ADE中,∵,∴,在Rt△ACE中,∵,∴,∴(米),答:建筑物CD的高度約為39米.22、解:原式=,.【解析】

試題分析:先將括號里面的通分后,將除法轉換成乘法,約分化簡.然后代x的值,進行二次根式化簡.解:原式=.當x=-1時,原式.23、(1)詳見解析;(2)BD=9.6.【解析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論