學(xué)高中數(shù)學(xué) 第二章 2.2.2(二)雙曲線的簡單幾何性質(zhì)(二)基礎(chǔ)過關(guān)訓(xùn)練 新人教A版選修1-1_第1頁
學(xué)高中數(shù)學(xué) 第二章 2.2.2(二)雙曲線的簡單幾何性質(zhì)(二)基礎(chǔ)過關(guān)訓(xùn)練 新人教A版選修1-1_第2頁
學(xué)高中數(shù)學(xué) 第二章 2.2.2(二)雙曲線的簡單幾何性質(zhì)(二)基礎(chǔ)過關(guān)訓(xùn)練 新人教A版選修1-1_第3頁
學(xué)高中數(shù)學(xué) 第二章 2.2.2(二)雙曲線的簡單幾何性質(zhì)(二)基礎(chǔ)過關(guān)訓(xùn)練 新人教A版選修1-1_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2.2.2雙曲線的簡單幾何性質(zhì)(二)一、基礎(chǔ)過關(guān)1.過雙曲線x2-y2=4的焦點(diǎn)且垂直于實(shí)軸的直線與雙曲線交于A,B兩點(diǎn),則AB的長為()A.2 B.4 C.8 D.4eq\r(2)2.過雙曲線的一個(gè)頂點(diǎn)A作直線l,若l與雙曲線只有一個(gè)公共點(diǎn),則這樣的直線l有幾條()A.0 B.1 C.3 3.已知橢圓eq\f(x2,9)+eq\f(y2,5)=1和雙曲線eq\f(x2,m2)-eq\f(y2,3)=1(m>0)有相同的焦點(diǎn),那么雙曲線的漸近線方程是()A.3x±y=0 B.x±3y=0C.eq\r(3)x±y=0 D.x±eq\r(3)y=04.已知雙曲線eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)的半焦距為c,若原點(diǎn)到直線bx+ay=ab的距離為eq\f(c,2),則雙曲線的離心率e等于 ()A.eq\r(2) B.2 C.2eq\r(2) D.45.過雙曲線eq\f(x2,a2)-eq\f(y2,b2)=1的左焦點(diǎn)F且垂直于x軸的直線與雙曲線相交于M,N兩點(diǎn),且雙曲線的右頂點(diǎn)A滿足MA⊥NA,則雙曲線的離心率等于________.6.已知點(diǎn)(x,y)在雙曲線4x2-y2=16上,則y2+8x的最小值為________.7.雙曲線eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)的兩個(gè)焦點(diǎn)為F1、F2,若P為其上一點(diǎn),且|PF1|=2|PF2|,則雙曲線離心率的取值范圍為________.二、能力提升8.設(shè)F1、F2分別是雙曲線x2-eq\f(y2,9)=1的左、右焦點(diǎn).若P在雙曲線上,且eq\o(PF1,\s\up6(→))·eq\o(PF2,\s\up6(→))=0,則|eq\o(PF1,\s\up6(→))+eq\o(PF2,\s\up6(→))|等于 ()A.2eq\r(5) B.eq\r(5) C.2eq\r(10) D.eq\r(10)9.已知橢圓C1:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)與雙曲線C2:x2-eq\f(y2,4)=1有公共的焦點(diǎn),C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點(diǎn).若C1恰好將線段AB三等分,則 ()A.a2=eq\f(13,2) B.a2=13C.b2=eq\f(1,2) D.b2=210.已知雙曲線方程x2-eq\f(y2,2)=1,過點(diǎn)A(0,1)作直線l交雙曲線于P1、P2的不同兩點(diǎn),若線段P1P2的中點(diǎn)在直線x=eq\f(1,2)上,求l的斜率k的值.11.已知雙曲線E的中心為原點(diǎn),F(xiàn)(3,0)是E的一個(gè)焦點(diǎn),過F的直線l與E相交于A,B兩點(diǎn),且AB的中點(diǎn)為N(-12,-15).求雙曲線E的方程.三、探究與拓展12.直線l:y=kx+1與雙曲線C:2x2-y2=1的右支交于不同的兩點(diǎn)A、B.(1)求實(shí)數(shù)k的取值范圍;(2)是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過雙曲線C的右焦點(diǎn)F?若存在,求出k的值;若不存在,說明理由.

答案1.B2.C3.C4.A5.26.-167.(1,3]8.C9.C10.解設(shè)直線l的方程為y=kx+1(k≠0).由eq\b\lc\{\rc\(\a\vs4\al\co1(y=kx+1,,x2-\f(y2,2)=1,))得(2-k2)x2-2kx-3=0.∴eq\b\lc\{\rc\(\a\vs4\al\co1(2-k2≠0,,Δ=4k2-42-k2-3,=-8k2+24>0.))解得-eq\r(3)<k<eq\r(3),且k≠±eq\r(2).∵P1P2的中點(diǎn)在直線x=eq\f(1,2)上.∴eq\f(1,2)(x1+x2)=eq\f(-k,k2-2)=eq\f(1,2),∴k=-1±eq\r(3).∵-eq\r(3)<k<eq\r(3),且k≠±eq\r(2).∴k=-1+eq\r(3).11.解設(shè)雙曲線的標(biāo)準(zhǔn)方程為eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0),由題意知c=3,a2+b2=9.設(shè)A(x1,y1),B(x2,y2),則eq\b\lc\{\rc\(\a\vs4\al\co1(\f(x\o\al(2,1),a2)-\f(y\o\al(2,1),b2)=1,,\f(x\o\al(2,2),a2)-\f(y\o\al(2,2),b2)=1,))兩式作差得eq\f(y1-y2,x1-x2)=eq\f(b2x1+x2,a2y1+y2)=eq\f(-12b2,-15a2)=eq\f(4b2,5a2).又直線AB的斜率是eq\f(-15-0,-12-3)=1,所以4b2=5a2,代入a2+b2=9得a2=4,b2所以雙曲線的標(biāo)準(zhǔn)方程是eq\f(x2,4)-eq\f(y2,5)=1.12.解(1)將直線l的方程y=kx+1代入雙曲線C的方程2x2-y2=1后,整理得(k2-2)x2+2kx+2=0①,依題意,直線l與雙曲線C的右支交于不同兩點(diǎn),∴eq\b\lc\{\rc\(\a\vs4\al\co1(k2-2≠0,,Δ=2k2-8k2-2>0,,-\f(2k,k2-2)>0,,\f(2,k2-2)>0,))解得k的取值范圍為{k|-2<k<-eq\r(2)}.(2)設(shè)A、B兩點(diǎn)的坐標(biāo)分別為(x1,y1)、(x2,y2),則由①得x1+x2=eq\f(2k,2-k2),x1x2=eq\f(2,k2-2),②假設(shè)存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過雙曲線C的右焦點(diǎn)F(c,0),則由FA⊥FB,得(x1-c)(x2-c)+y1y2=0.即(x1-c)(x2-c)+(kx1+1)(kx2+1)=0.整理得(k2+1)x1x2+(k-c)(x1+x2)+c2+1=0,③把②式及c=eq\f(\r(6),2)代入③

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論