湖北省武漢市青山區(qū)2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁(yè)
湖北省武漢市青山區(qū)2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁(yè)
湖北省武漢市青山區(qū)2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁(yè)
湖北省武漢市青山區(qū)2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁(yè)
湖北省武漢市青山區(qū)2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省武漢市青山區(qū)2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓與雙曲線有相同的焦點(diǎn),則的值為A. B.C. D.2.設(shè)為實(shí)數(shù),則曲線:不可能是()A.拋物線 B.雙曲線C.圓 D.橢圓3.若,則()A B.C. D.4.七巧板是中國(guó)古代勞動(dòng)人民發(fā)明的一種傳統(tǒng)智力玩具,它由五塊等腰直角三角形、一塊正方形和一塊平行四邊形共七塊板組成如圖是一個(gè)用七巧板拼成的正方形,若在此正方形中任取一點(diǎn),則此點(diǎn)取自陰影部分的概率為()A. B.C. D.5.已知橢圓的長(zhǎng)軸長(zhǎng),短軸長(zhǎng),焦距長(zhǎng)成等比數(shù)列,則橢圓離心率為()A. B.C. D.6.已知等差數(shù)列,,,則數(shù)列的前項(xiàng)和為()A. B.C. D.7.關(guān)于實(shí)數(shù)a,b,c,下列說(shuō)法正確的是()A.如果,則,,成等差數(shù)列B.如果,則,,成等比數(shù)列C.如果,則,,成等差數(shù)列D.如果,則,,成等差數(shù)列8.已知,若,是第二象限角,則=()A. B.5C. D.109.已知是邊長(zhǎng)為6的等邊所在平面外一點(diǎn),,當(dāng)三棱錐的體積最大時(shí),三棱錐外接球的表面積為()A. B.C. D.10.內(nèi)角A,B,C的對(duì)邊分別為a,b,c.若,則一定是()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形11.已知,則點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)是()A. B.C. D.12.一動(dòng)圓與圓外切,而與圓內(nèi)切,那么動(dòng)圓的圓心的軌跡是()A.橢圓 B.雙曲線C.拋物線 D.雙曲線的一支二、填空題:本題共4小題,每小題5分,共20分。13.“學(xué)習(xí)強(qiáng)國(guó)”學(xué)習(xí)平臺(tái)是由中宣部主管,以深入學(xué)習(xí)宣傳新時(shí)代中國(guó)特色社會(huì)主義思想為主要內(nèi)容,立足全體黨員,面向全社會(huì)的優(yōu)質(zhì)平臺(tái),現(xiàn)日益成為老百姓了解國(guó)家動(dòng)態(tài),緊跟時(shí)代脈搏的熱門APP,某市宣傳部門為了解全民利用“學(xué)習(xí)強(qiáng)國(guó)”了解國(guó)家動(dòng)態(tài)的情況,從全市抽取2000名人員進(jìn)行調(diào)查,統(tǒng)計(jì)他們每周利用“學(xué)習(xí)強(qiáng)國(guó)”的時(shí)長(zhǎng),下圖是根據(jù)調(diào)查結(jié)果繪制的頻率分布直方圖(1)根據(jù)上圖,求所有被抽查人員利用“學(xué)習(xí)強(qiáng)國(guó)”的平均時(shí)長(zhǎng)和中位數(shù);(2)宣傳部為了了解大家利用“學(xué)習(xí)強(qiáng)國(guó)”的具體情況,準(zhǔn)備采用分層抽樣的方法從和組中抽取50人了解情況,則兩組各抽取多少人?再利用分層抽樣從抽取的50入中選5人參加一個(gè)座談會(huì),現(xiàn)從參加座談會(huì)的5人中隨機(jī)抽取兩人發(fā)言,求小組中至少有1人發(fā)言的概率?14.雙曲線的焦點(diǎn)在圓上,圓O與雙曲線C的漸近線在第一、四象限分別交于P,Q兩點(diǎn)滿足(其中O是坐標(biāo)原點(diǎn)),則的面積是_________15.已知向量,,若,則實(shí)數(shù)=________.16.如圖是用斜二測(cè)畫(huà)法畫(huà)出水平放置的正三角形ABC的直觀圖,其中,則三角形的面積為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的離心率為,點(diǎn)在橢圓上,直線與交于,兩點(diǎn)(1)求橢圓的方程及焦點(diǎn)坐標(biāo);(2)若線段的垂直平分線經(jīng)過(guò)點(diǎn),求的取值范圍18.(12分)某公司從2020年初起生產(chǎn)某種高科技產(chǎn)品,初始投入資金為1000萬(wàn)元,到年底資金增長(zhǎng)50%.預(yù)計(jì)以后每年資金增長(zhǎng)率與第一年相同,但每年年底公司要扣除消費(fèi)資金x萬(wàn)元,余下資金再投入下一年的生產(chǎn).設(shè)第n年年底扣除消費(fèi)資金后的剩余資金為萬(wàn)元.(1)用x表示,,并寫(xiě)出與的關(guān)系式;.(2)若企業(yè)希望經(jīng)過(guò)5年后,使企業(yè)剩余資金達(dá)3000萬(wàn)元,試確定每年年底扣除的消費(fèi)資金x的值(精確到萬(wàn)元).19.(12分)已知數(shù)列中,,的前項(xiàng)和為,且數(shù)列是公差為-3的等差數(shù)列.(1)求;(2)若,數(shù)列前項(xiàng)和為.20.(12分)設(shè)橢圓的左焦點(diǎn)為,上頂點(diǎn)為.已知橢圓的短軸長(zhǎng)為4,離心率為(1)求橢圓的方程;(2)設(shè)點(diǎn)在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)為直線與軸的交點(diǎn),點(diǎn)且(為原點(diǎn)),求直線的斜率21.(12分)已知的三個(gè)內(nèi)角,,的對(duì)邊分別為,,,且滿足.(1)求角的大?。唬?)若,,,求的長(zhǎng).22.(10分)已知數(shù)列,,,為其前n項(xiàng)和,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)題意可知,結(jié)合的條件,可知,故選C考點(diǎn):橢圓和雙曲線性質(zhì)2、A【解析】根據(jù)圓的方程、橢圓的方程、雙曲線的方程和拋物線的方程特征即可判斷.【詳解】解:對(duì)A:因?yàn)榍€C的方程中都是二次項(xiàng),所以根據(jù)拋物線標(biāo)準(zhǔn)方程的特征曲線C不可能是拋物線,故選項(xiàng)A正確;對(duì)B:當(dāng)時(shí),曲線C為雙曲線,故選項(xiàng)B錯(cuò)誤;對(duì)C:當(dāng)時(shí),曲線C為圓,故選項(xiàng)C錯(cuò)誤;對(duì)D:當(dāng)且時(shí),曲線C為橢圓,故選項(xiàng)D錯(cuò)誤;故選:A.3、D【解析】直接利用向量的坐標(biāo)運(yùn)算求解即可【詳解】因?yàn)?,所以,故選:D4、D【解析】設(shè)正方形的邊長(zhǎng)為,計(jì)算出陰影部分區(qū)域的面積和正方形區(qū)域的面積,然后利用幾何概型的概率公式計(jì)算出所求事件的概率.【詳解】設(shè)大正方形的邊長(zhǎng)為,則面積為,陰影部分由一個(gè)大等腰直角三角形和一個(gè)梯形組成大等腰直角三角形的面積為,梯形的上底為,下底為,高為,面積為,故所求概率故選:D.5、A【解析】由題意,,結(jié)合,求解即可【詳解】∵橢圓的長(zhǎng)軸長(zhǎng),短軸長(zhǎng),焦距長(zhǎng)成等比數(shù)列∴∴又∵∴∴,即∴e=又在橢圓e>0∴e=故選:A6、A【解析】求出通項(xiàng),利用裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和.【詳解】因?yàn)榈炔顢?shù)列,,,所以,所以,所以數(shù)列的前項(xiàng)和為故B,C,D錯(cuò)誤.故選:A.7、B【解析】根據(jù)給定條件結(jié)合取特值、推理計(jì)算等方法逐一分析各個(gè)選項(xiàng)并判斷即可作答.【詳解】對(duì)于A,若,取,而,即,,不成等差數(shù)列,A不正確;對(duì)于B,若,則,即,,成等比數(shù)列,B正確;對(duì)于C,若,取,而,,,不成等差數(shù)列,C不正確;對(duì)于D,a,b,c是實(shí)數(shù),若,顯然都可以為負(fù)數(shù)或者0,此時(shí)a,b,c無(wú)對(duì)數(shù),D不正確.故選:B8、D【解析】先由誘導(dǎo)公式及同角函數(shù)關(guān)系得到,再根據(jù)誘導(dǎo)公式化簡(jiǎn),最后由二倍角公式化簡(jiǎn)求值即可.【詳解】∵,∴,∵是第二象限角,∴,∴故選:D9、C【解析】由題意分析可得,當(dāng)時(shí)三棱錐的體積最大,然后作圖,將三棱錐還原成正三棱柱,按照正三棱柱外接球半徑的計(jì)算方法來(lái)計(jì)算,即可計(jì)算出球半徑,從而完成求解.【詳解】由題意可知,當(dāng)三棱錐的體積最大時(shí)是時(shí),為正三角形,如圖所示,將三棱錐補(bǔ)成正三棱柱,該正三棱柱的外接球就是三棱錐的外接球,而正三棱柱的外接球球心落在上下底面外接圓圓心連線的中點(diǎn)上,設(shè)外接圓半徑為,三棱錐外接球半徑為,由正弦定理可得:,所以,,所以三棱錐外接球的表面積為.故選:C.10、C【解析】利用余弦定理角化邊整理可得.【詳解】由余弦定理有,整理得,故一定是直角三角形.故選:C11、C【解析】根據(jù)對(duì)稱性求得坐標(biāo)即可.【詳解】點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)是,故選:C12、A【解析】依據(jù)定義法去求動(dòng)圓的圓心的軌跡即可解決.【詳解】設(shè)動(dòng)圓的半徑為r,又圓半徑為1,圓半徑為8,則,,可得,又則動(dòng)圓的圓心的軌跡是以為焦點(diǎn)長(zhǎng)軸長(zhǎng)為9的橢圓.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、(1)平均時(shí)長(zhǎng)為,中位數(shù)為(2)在和兩組中分別抽取30人和20人,概率【解析】(1)由頻率分布直方圖計(jì)算平均數(shù),中位數(shù)的公式即可求解;(2)先根據(jù)分層抽樣求出每一組抽取的人數(shù),再列舉抽取總事件個(gè)數(shù),從而利用古典概型概率計(jì)算公式即可求解【小問(wèn)1詳解】解:(1)設(shè)被抽查人員利用“學(xué)習(xí)強(qiáng)國(guó)”的平均時(shí)長(zhǎng)為,中位數(shù)為,,被抽查人員利用“學(xué)習(xí)強(qiáng)國(guó)”的時(shí)長(zhǎng)中位數(shù)滿足,解得,即抽查人員利用“學(xué)習(xí)強(qiáng)國(guó)”的平均時(shí)長(zhǎng)為6.8,中位數(shù)為【小問(wèn)2詳解】解:組的人數(shù)為人,設(shè)抽取的人數(shù)為,組的人數(shù)為人,設(shè)抽取的人數(shù)為,則,解得,,所以在和兩組中分別抽取30人和20人,再利用分層抽樣從抽取的50入中抽取5人,兩組分別抽取3人和2人,將組中被抽取的工作人員標(biāo)記為,,,將中的標(biāo)記為,,則抽取的情況如下:,,,,,,,,,,,,,,,,,,,共10種情況,其中在中至少抽取1人有7種,故所求概率14、【解析】根據(jù)雙曲線的焦點(diǎn)在圓上可求出的值,設(shè)線段與軸的交點(diǎn)坐標(biāo)為,進(jìn)而根據(jù)求出的坐標(biāo),代入圓中,求出的值,即可求出結(jié)果.【詳解】因?yàn)殡p曲線的焦點(diǎn)在圓上,所以,設(shè)線段與軸的交點(diǎn)坐標(biāo)為,結(jié)合雙曲線與圓的對(duì)稱性可知為線段的中點(diǎn),又因?yàn)椋?,且,則,又因?yàn)橹本€的方程為,所以,又因?yàn)樵趫A上,所以,又因?yàn)?,則,所以,從而,故,故答案為:.15、【解析】由可求得【詳解】因?yàn)?,所以,故答案為:【點(diǎn)睛】本題考查向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題16、【解析】根據(jù)直觀圖和平面圖的關(guān)系可求出,進(jìn)而利用面積公式可得三角形的面積【詳解】由已知可得則故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),(2)【解析】(1)由題意,列出關(guān)于a,b,c的方程組求解即可得答案;(2)設(shè)M(x1,y1),N(x2,y2),線段MN的中點(diǎn)(x0,y0),則,作差可得①,又線段MN的垂直平分線過(guò)點(diǎn)A(0,1),則②,聯(lián)立直線MN與橢圓的方程,可得﹣t2+1+4k2>0(*),③,由①②③及(*)式聯(lián)立即可求解【小問(wèn)1詳解】解:由題意可得,解得,所以橢圓C的方程為,焦點(diǎn)坐標(biāo)為【小問(wèn)2詳解】解:設(shè)M(x1,y1),N(x2,y2),線段MN的中點(diǎn)(x0,y0),因?yàn)?,所以,即,所以①,因?yàn)榫€段MN的垂直平分線過(guò)點(diǎn)A(0,1),所以,即②,聯(lián)立,得(1+4k2)x2+8ktx+4t2﹣4=0,所以=(8kt)2﹣4(1+4k2)(4t2﹣4)=﹣16t2+16+64k2>0,即﹣t2+1+4k2>0(*),③,把③代入②,得④,把③④代入①得,所以,即,代入(*)得,解得,又k≠0,所以k的取值范圍為18、(1);(2)x=348【解析】(1)根據(jù)題意直接得,,進(jìn)而歸納出;(2)由(1)可得,利用等比數(shù)列的求和公式可得,結(jié)合即可計(jì)算出d的值.【小問(wèn)1詳解】由題意知,,,;【小問(wèn)2詳解】由(1)可得,,則,所以,即,當(dāng)時(shí),,解得,當(dāng)時(shí),萬(wàn)元.故該企業(yè)每年年底扣除消費(fèi)資金為348萬(wàn)元時(shí),5年后企業(yè)剩余資金為3000萬(wàn)元.19、(1)(2)【解析】(1)由條件先求出通項(xiàng)公式,得出,再由可得出答案.(2)由(1)可知,由裂項(xiàng)相消法可得答案.【小問(wèn)1詳解】由,則由數(shù)列是公差為的等差數(shù)列,則所以當(dāng)時(shí),當(dāng)時(shí),符合上式所以【小問(wèn)2詳解】由(1)可知?jiǎng)t20、(1)(2)或【解析】(1)根據(jù)已知條件求得,由此求得橢圓方程.(2)設(shè)出直線的方程,并與橢圓方程聯(lián)立,求得點(diǎn)坐標(biāo),根據(jù)列方程,化簡(jiǎn)求得直線的斜率.【小問(wèn)1詳解】設(shè)橢圓的半焦距為,依題意,,又,可得,.所以,橢圓的方程為小問(wèn)2詳解】由題意,設(shè).設(shè)直線的斜率為,又,則直線的方程為,與橢圓方程聯(lián)立整理得,可得,代入得,進(jìn)而直線的斜率.在中,令,得,所以直線的斜率為由,得

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論