版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆山西省應(yīng)縣第一中學(xué)高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.采用系統(tǒng)抽樣方法,從個體數(shù)為1001的總體中抽取一個容量為40的樣本,則在抽取過程中,被剔除的個體數(shù)與抽樣間隔分別為()A.1,25 B.1,20C.3,20 D.3,252.函數(shù)的定義域為()A. B.C. D.3.“”是“為第二象限角”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.若表示空間中兩條不重合的直線,表示空間中兩個不重合的平面,則下列命題中正確的是()A.若,則 B.若,則C.若,則 D.若,則5.已知集合,集合,則A∩B=()A. B.C. D.6.下列命題中,真命題是.A.xR,x2+1=x B.xR,x2+1<2xC.xR,x2+1>x D.xR,x2+2x>17.函數(shù)的部分圖象如圖所示,則的值為()A. B.C. D.8.當時,函數(shù)和的圖像只可能是()A. B.C. D.9.設(shè)函數(shù)則A.1 B.4C.5 D.910.下列函數(shù)中,在區(qū)間上為增函數(shù)的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則__________12.若函數(shù)滿足:對任意實數(shù),有且,當[0,1]時,,則[2017,2018]時,______________________________13.若角的終邊經(jīng)過點,則___________.14.有一批材料可以建成360m長的圖墻,如果用此材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣材料隔成三個面積相等的小矩形如圖所示,則圍成場地的最大面積為______圍墻厚度不計15.在平面四邊形中,,若,則__________.16.函數(shù)(且)恒過的定點坐標為_____,若直線經(jīng)過點且,則的最小值為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖所示,是圓柱的母線,是圓柱底面圓的直徑,是底面圓周上異于的任意一點,.(1)求證:;(2)求三棱錐體積的最大值,并寫出此時三棱錐外接球的表面積.18.已知函數(shù),.(1)若關(guān)于的不等式的解集為,當時,求的最小值;(2)若對任意的、,不等式恒成立,求實數(shù)的取值范圍19.已知函數(shù)的部分圖像如圖所示(1)求函數(shù)f(x)的解析式,并寫出其單調(diào)遞增區(qū)間;(2)在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,若,且a、b是方程的兩個實數(shù)根,試求△ABC的周長及其外接圓的面積20.已知函數(shù),在區(qū)間上有最大值,最小值,設(shè)函數(shù).(1)求的值;(2)不等式在上恒成立,求實數(shù)的取值范圍;(3)方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.21.已知函數(shù).(1)求的最小正周期和最大值;(2)討論在上的單調(diào)性.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)系統(tǒng)抽樣的間隔相等,利用求出抽取過程中被剔除的個體數(shù)和抽樣間隔【詳解】解:因為余1,所以在抽取過程中被剔除的個體數(shù)是1;抽樣間隔是25故選:A2、B【解析】根據(jù)函數(shù)的解析式有意義,列出不等式,即可求解.【詳解】由題意,函數(shù)有意義,則滿足,解得且,所以函數(shù)的定義域為.故選:B.3、B【解析】利用輔助角公式及正弦函數(shù)的性質(zhì)解三角形不等式,再根據(jù)集合的包含關(guān)系判斷充分條件、必要條件即可;【詳解】解:由,即,所以,,解得,,即,又第二象限角為,因為真包含于,所以“”是“為第二象限角”的必要不充分條件;故選:B4、C【解析】利用空間位置關(guān)系的判斷及性質(zhì)定理進行判斷或舉反例判斷【詳解】對于A,若n?平面α,顯然結(jié)論錯誤,故A錯誤;對于B,若m?α,n?β,α∥β,則m∥n或m,n異面,故B錯誤;對于C,若m⊥n,m⊥α,n⊥β,則α⊥β,根據(jù)面面垂直的判定定理進行判定,故C正確;對于D,若α⊥β,m?α,n?β,則m,n位置關(guān)系不能確定,故D錯誤故選C【點睛】本題考查了空間線面位置關(guān)系的性質(zhì)與判斷,屬于中檔題5、B【解析】化簡集合B,再求集合A,B的交集即可.【詳解】∵集合,集合,∴.故選:B.6、C【解析】根據(jù)全稱命題和特稱命題的含義,以及不等式性質(zhì)的應(yīng)用,即可求解.【詳解】對于A中,,所以,所以不正確;對于B中,,所以,所以不正確;對于C中,,所以,所以正確;對于D中,,所以不正確,故選C.【點睛】本題主要考查了全稱命題與特稱命題的真假判定,其中解答中正確理解全稱命題和特稱命題的含義,以及不等式性質(zhì)的應(yīng)用是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.7、C【解析】由函數(shù)的部分圖象得到函數(shù)的最小正周期,求出,代入求出值,則函數(shù)的解析式可求,取可得的值.【詳解】由圖象可得函數(shù)的最小正周期為,則.又,則,則,,則,,,則,,則,.故選:C.【點睛】方法點睛:根據(jù)三角函數(shù)的部分圖象求函數(shù)解析式的方法:(1)求、,;(2)求出函數(shù)的最小正周期,進而得出;(3)取特殊點代入函數(shù)可求得的值.8、A【解析】由一次函數(shù)的圖像判斷出a、b的符號,結(jié)合指數(shù)函數(shù)的圖像一一進行判斷可得答案.【詳解】解:A項,由一次函數(shù)的圖像可知此時函數(shù)為減函數(shù),故A項正確;B項,由一次函數(shù)的圖像可知此時函數(shù)為增函數(shù),故B項錯誤;C項,由一次函數(shù)的圖像可知,此時函數(shù)為的直線,故C項錯誤;D項,由一次函數(shù)的圖像可知,,此時函數(shù)為增函數(shù),故D項錯誤;故選A.【點睛】本題主要考查指數(shù)函數(shù)的圖像特征,相對簡單,由直線得出a、b的范圍對指數(shù)函數(shù)進行判斷是解題的關(guān)鍵.9、C【解析】根據(jù)題意,由函數(shù)的解析式求出與的值,相加即可得答案【詳解】根據(jù)題意,函數(shù),則,又由,則,則;故選C【點睛】本題考查對數(shù)的運算,及函數(shù)求值問題,其中解答中熟記對數(shù)的運算,以及合理利用分段函數(shù)的解析式求解是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題10、B【解析】利用基本初等函數(shù)的單調(diào)性可得出合適的選項.【詳解】函數(shù)、在區(qū)間上為減函數(shù),函數(shù)在區(qū)間上為增函數(shù),函數(shù)在區(qū)間上不單調(diào).故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】將題干中的兩個等式先平方再相加,利用兩角差的余弦公式可求得結(jié)果.【詳解】由,,兩式相加有,可得故答案為:.12、【解析】由題意可得:,則,據(jù)此有,即函數(shù)的周期為,設(shè),則,據(jù)此可得:,若,則,此時.13、【解析】根據(jù)三角函數(shù)的定義求出和的值,再由正弦的二倍角公式即可求解.【詳解】因為角的終邊經(jīng)過點,所以,,則,所以,,所以,故答案為:.14、8100【解析】設(shè)小矩形的高為,把面積用表示出來,再根據(jù)二次函數(shù)的性質(zhì)求得最大值【詳解】解:設(shè)每個小矩形的高為am,則長為,記面積為則當時,所圍矩形面積最大值為故答案8100【點睛】本題考查函數(shù)的應(yīng)用,解題關(guān)鍵是尋找一個變量,把面積表示為此變量的函數(shù),再根據(jù)函數(shù)的知識求得最值.本題屬于基礎(chǔ)題15、##1.5【解析】設(shè),在中,可知,在中,可得,由正弦定理,可得答案.【詳解】設(shè),在中,,,,在中,,,,,由正弦定理得:,得,.故答案為:.16、①.②.【解析】根據(jù)對數(shù)函數(shù)過定點得過定點,再根據(jù)基本不等式“1”的用法求解即可.【詳解】解:函數(shù)(且)由函數(shù)(且)向上平移1個單位得到,函數(shù)(且)過定點,所以函數(shù)過定點,即,所以,因為,所以所以,當且僅當,即時等號成立,所以的最小值為故答案為:;三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】(1)由圓柱易知平面,所以,由圓的性質(zhì)易得,進而可證平面;(2)由已知得三棱錐的高,當直角的面積最大時,三棱錐的體積最大,當點在弧中點時最大,此時外接球的直徑即可得解.試題解析:(1)證明:∵已知是圓柱的母線,.∴平面∵是圓柱底面圓的直徑,是底面圓周上異于的任意一點,∴,又,∴平面又平面(2)解:由已知得三棱錐的高,當直角的面積最大時,三棱錐的體積最大,當點在弧中點時最大,,結(jié)合(1)可得三棱錐的外接球的直徑即為,所以此時外接球的直徑..點睛:一般外接球需要求球心和半徑,首先應(yīng)確定球心的位置,借助于外接球的性質(zhì),球心到各頂點距離相等,這樣可先確定幾何體中部分點組成的多邊形的外接圓的圓心,過圓心且垂直于多邊形所在平面的直線上任一點到多邊形的頂點的距離相等,然后同樣的方法找到另一個多邊形的各頂點距離相等的直線(這兩個多邊形需有公共點),這樣兩條直線的交點,就是其外接球的球心,再根據(jù)半徑,頂點到底面中心的距離,球心到底面中心的距離,構(gòu)成勾股定理求解,有時也可利用補體法得到半徑,例:三條側(cè)棱兩兩垂直的三棱錐,可以補成長方體,它們是同一個外接球.18、(1)(2)【解析】(1)根據(jù)二次不等式的解集得,再根據(jù)基本不等式求解即可;(2)根據(jù)題意將問題轉(zhuǎn)化為在恒成立,再令,(),分類討論即可求解.【詳解】(1)由關(guān)于的不等式的解集為,所以知∴又∵,∴,取“”時∴即的最小值為,取“”時(2)∵時,,∴根據(jù)題意得:在恒成立記,()①當時,由,∴②當時,由,∴③當時,由,綜上所述,的取值范圍是【點睛】本題的第二問中關(guān)鍵是采用動軸定區(qū)間的方法進行求解,即討論對稱軸在定區(qū)間的左右兩側(cè)以及對稱軸在定區(qū)間上的變化情況,從而確定該函數(shù)的最值.19、(1),(2),【解析】(1)根據(jù)圖像可得及函數(shù)的周期,從而求得,然后利用待定系數(shù)法即可求得,再根據(jù)正弦函數(shù)的單調(diào)性結(jié)合整體思想即可求出函數(shù)的增區(qū)間;(2)根據(jù)可求得角,利用韋達定理可得,再利用余弦定理可求得邊,再利用正弦定理可得外接圓的半徑,即可得出答案.【小問1詳解】解:由函數(shù)圖象知,又由函數(shù)圖象知,所以,得,∴,因為圖象過點(0,1),所以,所以,又因為,所以,所以函數(shù)f(x)的解析式為,令,則,所以單調(diào)遞增區(qū)間為:;【小問2詳解】,結(jié)合,則,所以,又由題設(shè),得,所以,所以,∴三角形ABC的周長,∵外接圓的直徑,∴,∴外接圓的面積.20、(1);(2);(3)【解析】(1)利用二次函數(shù)閉區(qū)間上的最值,通過a與0的大小討論,列出方程,即可求a,b的值;(2)轉(zhuǎn)化不等式f(2x)﹣k?2x≥0,為k在一側(cè),另一側(cè)利用換元法通過二次函數(shù)在x∈[﹣1,1]上恒成立,求出最值,即可求實數(shù)k的取值范圍;(3)化簡方程f(|2x﹣1|)+k(3)=0,轉(zhuǎn)化為兩個函數(shù)的圖象的交點的個數(shù),利用方程有三個不同的實數(shù)解,推出不等式然后求實數(shù)k的取值范圍【詳解】解:(1)g(x)=a(x﹣1)2+1+b﹣a,∵a>0,∴g(x)在[2,3]上為增函數(shù),故,可得,?∴a=1,b=0(2)方程f(2x)﹣k?2x≥0化為2x2≥k?2x,k≤1令t,k≤t2﹣2t+1,∵x∈[﹣1,1],∴t,記φ(t)=t2﹣2t+1,∴φ(t)min=φ(1)=0,∴k≤0(3)由f(|2x﹣1|)+k(3)=0得|2x﹣1|(2+3k)=0,|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,|2x﹣1|≠0,令|2x﹣1|=t,則方程化為t2﹣(2+3k)t+(1+2k)=0(t≠0),∵方程|2x﹣1|(2+3k)=0有三個不同的實數(shù)解,∴由t=|2x﹣1|的圖象(如圖)知,t2﹣(2+3k)t+(1+2k)=0有兩個根t1、t2,且0<t1<1<t2或0<t1<1,t2=1,記φ(t)=t2﹣(2+3k)t+(1+2k),則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025煤炭購銷合同書范文
- 2024年私人借款償還合同書3篇
- 2024年短期派遣勞動合同模板
- 2025年度IT公司內(nèi)部研發(fā)人員保密與商業(yè)秘密保護協(xié)議3篇
- 2024年美發(fā)店勞動合同樣本
- 2025年雙氰胺合作協(xié)議書
- 2024年設(shè)備采購補充協(xié)議:交貨期及違約責任版B版
- 2025版生態(tài)建筑合同履行與節(jié)能減排擔保協(xié)議3篇
- 2024年股東股權(quán)變更協(xié)議:權(quán)益轉(zhuǎn)讓合同范本
- 二零二五年專業(yè)電商庫房租賃及倉儲配送服務(wù)合同2篇
- 《鋼結(jié)構(gòu)》期末考試/試題庫(含答案)要點-2
- 小學(xué)綜合實踐活動案例,小學(xué)綜合實踐活動案例
- 思政教師培訓(xùn)心得體會2021
- 零基礎(chǔ)的住宅和城市設(shè)計知到章節(jié)答案智慧樹2023年同濟大學(xué)
- 防止電力生產(chǎn)事故的-二十五項重點要求2023版
- 建辦號建筑工程安全防護、文明施工措施費用及使用管理規(guī)定
- GB/T 30170-2013地理信息基于坐標的空間參照
- 醫(yī)院消毒供應(yīng)中心清洗、消毒、滅菌質(zhì)控評分表
- 2022年學(xué)校寒假德育特色作業(yè)實踐方案(詳細版)
- 可愛卡通插畫風讀書分享通用PPT模板
- 光伏發(fā)電項目試驗計劃
評論
0/150
提交評論