27.2.3相似三角形的應用(分層作業(yè))2022-2023學年九年級數(shù)學下冊(人教版)(原卷版)_第1頁
27.2.3相似三角形的應用(分層作業(yè))2022-2023學年九年級數(shù)學下冊(人教版)(原卷版)_第2頁
27.2.3相似三角形的應用(分層作業(yè))2022-2023學年九年級數(shù)學下冊(人教版)(原卷版)_第3頁
27.2.3相似三角形的應用(分層作業(yè))2022-2023學年九年級數(shù)學下冊(人教版)(原卷版)_第4頁
27.2.3相似三角形的應用(分層作業(yè))2022-2023學年九年級數(shù)學下冊(人教版)(原卷版)_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

27.2.3相似三角形的應用【A組基礎題】1.《孫子算經(jīng)》是中國古代重要的數(shù)學著作,成書于約一千五百年前,其中有首歌謠:今有竿不知其長,量得影長一丈五尺,立一標桿,長一尺五寸,影長五寸,問竿長幾何?意即:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五尺,同時立一根一尺五寸的小標桿,它的影長五寸(提示:1丈=10尺,1尺=10寸),則竹竿的長為()A.五丈 B.四丈五尺 C.一丈 D.五尺2.泰勒斯是古希臘時期的思想家,科學家,哲學家,他最早提出了命題的證明.泰勒斯曾通過測量同一時刻標桿的影長,標桿的高度。金字塔的影長,推算出金字塔的高度。這種測量原理,就是我們所學的(

)A.圖形的平移 B.圖形的旋轉 C.圖形的軸對稱 D.圖形的相似3.學校門口的欄桿如圖所示,欄桿從水平位置繞點旋轉到位置,已知,,垂足分別為,,,,,則欄桿端應下降的垂直距離為(

)A. B. C. D.4.興趣小組的同學要測量樹的高度.在陽光下,一名同學測得一根長為米的竹竿的影長為米,同時另一名同學測量樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在教學樓的第一級臺階上,測得此影子長為米,一級臺階高為米,如圖所示,若此時落在地面上的影長為米,則樹高為()A.11.5米 B.11.75米 C.11.8米 D.12.25米5.如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條邊DF=50cm,EF=30cm,測得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為()A.12m B.13.5m C.15m D.16.5m6.如圖,比例規(guī)是一種畫圖工具,它由長度相等的兩腳AC和BD交叉構成,利用它可以把線段按一定的比例伸長或縮短.如果把比例規(guī)的兩腳合上,使螺絲釘固定在刻度3的地方(即同時使OA=3OC,OB=3OD),然后張開兩腳,使A,B兩個尖端分別在線段a的兩個端點上,當CD=1.8cm時,則AB的長為()A.7.2cm B.5.4cm C.3.6cm D.0.6cm7.如圖,有一塊銳角三角形材料,邊BC=120mm,高AD=80mm,要把它加工成正方形零件,使其一邊在BC上,其余兩個頂點分別在AB、AC上,則這個正方形零件的邊長為A.40mm B.45mm C.48mm D.60mm8.為測量被池塘相隔的兩棵樹,的距離,數(shù)學課外興趣小組的同學們設計了如圖所示的測量方案:從樹沿著垂直于的方向走到,再從沿著垂直于的方向走到,為上一點,其中位同學分別測得三組數(shù)據(jù):,,,,,,其中能根據(jù)所測數(shù)據(jù)求得,兩樹距離的有()A.0組 B.一組 C.二組 D.三組9.圓桌面(桌面中間有一個直徑為0.4m的圓洞)正上方的燈泡(看作一個點)發(fā)出的光線照射平行于地面的桌面后,在地面上形成如圖所示的圓環(huán)形陰影.已知桌面直徑為1.2m,桌面離地面1m,若燈泡離地面3m,則地面圓環(huán)形陰影的面積是()A.0.324πm2 B.0.288πm2 C.1.08πm2 D.0.72πm210.如圖,路燈P點距地面9m,身高1.8m的小明從距路燈底部O點20m的A點沿AO所在的直線行走了14m到達B點時,則小明的身影()A.增長了3米 B.縮短了3米C.縮短了3.5米 D.增長了3.5米11.在同一時刻兩根木桿在太陽光下的影子如圖所示,其中木桿AB=2米,它的影子BC=1.6米,木桿PQ的影子有一部分落在墻上,PM=1.2米,MN=0.8米,求木桿PQ的長度.12.如圖,在相對的兩棟樓中間有一堵墻,甲、乙兩人分別在這兩棟樓內觀察這堵墻,視線如圖1所示.根據(jù)實際情況畫出平面圖形如圖2(CD⊥DF,AB⊥DF,EF⊥DF),甲從點C可以看到點G處,乙從點E可以看到點D處,點B是DF的中點,墻AB高5.5米,DF=100米,BG=10.5米,求甲、乙兩人的觀測點到地面的距離之差(結果精確到0.1米)13.如圖,矩形ABCD為臺球桌面,AD=260cm,AB=130cm,球目前在E點位置,AE=60cm.如果小丁瞄準BC邊上的點F將球打過去,經(jīng)過反彈后,球剛好彈到D點位置.(1)求證:△BEF∽△CDF;(2)求CF的長.14.如圖,一條河的兩岸BC與DE互相平行,兩岸各有一排景觀燈(圖中黑點代表景觀燈),每排相鄰兩景觀燈的間隔都是10m,在與河岸DE的距離為16m的A處(AD⊥DE)看對岸BC,看到對岸BC上的兩個景觀燈的燈桿恰好被河岸DE上兩個景觀燈的燈桿遮住.河岸DE上的兩個景觀燈之間有1個景觀燈,河岸BC上被遮住的兩個景觀燈之間有4個景觀燈,求這條河的寬度.15.如圖,有一路燈桿AB(底部B不能直接到達),在燈光下,小明在點D處測得自己的影長DF=3m,沿BD方向到達點F處再測得自己得影長FG=4m,如果小明的身高為1.6m,求路燈桿AB的高度.16.如圖,M、N為山兩側的兩個村莊,為了兩村交通方便,根據(jù)國家的惠民政策,政府決定打一直線涵洞.工程人員為了計算工程量,必須計算M、N兩點之間的直線距離,選擇測量點A、B、C,點B、C分別在AM、AN上,現(xiàn)測得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N兩點之間的距離.【B組提高題】17.如圖,為了求出海島上的山峰AB的高度,在D處和F處樹立標桿CD和EF,標桿的高都是3丈,D、F兩處相隔1000步(1丈10尺,1步6尺),并且AB,CD和EF在同一平面內.從標桿CD后退123步的G處,可以看到頂峰A和標桿頂端C在一條直線上;從標桿EF后退127步的H處,可以看到頂峰A和標桿頂端E在一條直線上.求山峰的高度AB及它和標桿CD的水平距離BD各是多少步?(提示:連接EC并延長交AB于點K,用AK與常數(shù)的積表示KC和KE.)(本題原出自我國魏晉時期數(shù)學家劉徽所著《重差》,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論