




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教七年級(jí)下冊(cè)數(shù)學(xué)期末解答題壓軸題卷一、解答題1.如圖,用兩個(gè)面積為的小正方形紙片剪拼成一個(gè)大的正方形.(1)大正方形的邊長(zhǎng)是________;(2)請(qǐng)你探究是否能將此大正方形紙片沿著邊的方向裁出一個(gè)面積為的長(zhǎng)方形紙片,使它的長(zhǎng)寬之比為,若能,求出這個(gè)長(zhǎng)方形紙片的長(zhǎng)和寬,若不能,請(qǐng)說(shuō)明理由.2.如圖,這是由8個(gè)同樣大小的立方體組成的魔方,體積為64.(1)求出這個(gè)魔方的棱長(zhǎng);(2)圖中陰影部分是一個(gè)正方形ABCD,求出陰影部分的邊長(zhǎng).3.如圖用兩個(gè)邊長(zhǎng)為cm的小正方形紙片拼成一個(gè)大的正方形紙片,沿著大正方形紙片的邊的方向截出一個(gè)長(zhǎng)方形紙片,能否使截得的長(zhǎng)方形紙片長(zhǎng)寬之比為,且面積為cm2?請(qǐng)說(shuō)明理由.4.小麗想用一塊面積為的正方形紙片,如圖所示,沿著邊的方向裁出一塊面積為的長(zhǎng)方形紙片,使它的長(zhǎng)是寬的2倍.她不知能否裁得出來(lái),正在發(fā)愁.小明見(jiàn)了說(shuō):“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意小明的說(shuō)法嗎?你認(rèn)為小麗能用這塊紙片裁出符合要求的紙片嗎?為什么?5.有一塊正方形鋼板,面積為16平方米.(1)求正方形鋼板的邊長(zhǎng).(2)李師傅準(zhǔn)備用它裁剪出一塊面積為12平方米的長(zhǎng)方形工件,且要求長(zhǎng)寬之比為,問(wèn)李師傅能辦到嗎?若能,求出長(zhǎng)方形的長(zhǎng)和寬;若不能,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):,).二、解答題6.已知,,.(1)如圖1,求證:;(2)如圖2,作的平分線交于點(diǎn),點(diǎn)為上一點(diǎn),連接,若的平分線交線段于點(diǎn),連接,若,過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),且,求的度數(shù).7.已知,AB∥CD,點(diǎn)E為射線FG上一點(diǎn).(1)如圖1,若∠EAF=25°,∠EDG=45°,則∠AED=.(2)如圖2,當(dāng)點(diǎn)E在FG延長(zhǎng)線上時(shí),此時(shí)CD與AE交于點(diǎn)H,則∠AED、∠EAF、∠EDG之間滿足怎樣的關(guān)系,請(qǐng)說(shuō)明你的結(jié)論;(3)如圖3,當(dāng)點(diǎn)E在FG延長(zhǎng)線上時(shí),DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度數(shù).8.已知點(diǎn)C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關(guān)系(用含α的代數(shù)式表示)(3)在②中,過(guò)點(diǎn)O′作OB的垂線,與∠OCD的平分線交于點(diǎn)P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關(guān)系.9.如圖,∠EBF=50°,點(diǎn)C是∠EBF的邊BF上一點(diǎn).動(dòng)點(diǎn)A從點(diǎn)B出發(fā)在∠EBF的邊BE上,沿BE方向運(yùn)動(dòng),在動(dòng)點(diǎn)A運(yùn)動(dòng)的過(guò)程中,始終有過(guò)點(diǎn)A的射線AD∥BC.(1)在動(dòng)點(diǎn)A運(yùn)動(dòng)的過(guò)程中,(填“是”或“否”)存在某一時(shí)刻,使得AD平分∠EAC?(2)假設(shè)存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關(guān)系?并請(qǐng)說(shuō)明理由;(3)當(dāng)AC⊥BC時(shí),直接寫(xiě)出∠BAC的度數(shù)和此時(shí)AD與AC之間的位置關(guān)系.10.已知,AB∥CD.點(diǎn)M在AB上,點(diǎn)N在CD上.(1)如圖1中,∠BME、∠E、∠END的數(shù)量關(guān)系為:;(不需要證明)如圖2中,∠BMF、∠F、∠FND的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度數(shù);(3)如圖4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,則∠FEQ的大小是否發(fā)生變化,若變化,請(qǐng)說(shuō)明理由,若不變化,求出∠FEQ的度數(shù).三、解答題11.已知,將一副三角板中的兩塊直角三角板如圖1放置,,,,.(1)若三角板如圖1擺放時(shí),則______,______.(2)現(xiàn)固定的位置不變,將沿方向平移至點(diǎn)E正好落在上,如圖2所示,與交于點(diǎn)G,作和的角平分線交于點(diǎn)H,求的度數(shù);(3)現(xiàn)固定,將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)至與直線首次重合的過(guò)程中,當(dāng)線段與的一條邊平行時(shí),請(qǐng)直接寫(xiě)出的度數(shù).12.已知:直線∥,A為直線上的一個(gè)定點(diǎn),過(guò)點(diǎn)A的直線交于點(diǎn)B,點(diǎn)C在線段BA的延長(zhǎng)線上.D,E為直線上的兩個(gè)動(dòng)點(diǎn),點(diǎn)D在點(diǎn)E的左側(cè),連接AD,AE,滿足∠AED=∠DAE.點(diǎn)M在上,且在點(diǎn)B的左側(cè).(1)如圖1,若∠BAD=25°,∠AED=50°,直接寫(xiě)出ABM的度數(shù);(2)射線AF為∠CAD的角平分線.①如圖2,當(dāng)點(diǎn)D在點(diǎn)B右側(cè)時(shí),用等式表示∠EAF與∠ABD之間的數(shù)量關(guān)系,并證明;②當(dāng)點(diǎn)D與點(diǎn)B不重合,且∠ABM+∠EAF=150°時(shí),直接寫(xiě)出∠EAF的度數(shù).13.閱讀下面材料:小穎遇到這樣一個(gè)問(wèn)題:已知:如圖甲,為之間一點(diǎn),連接,求的度數(shù).她是這樣做的:過(guò)點(diǎn)作則有因?yàn)樗寓偎运约確;1.小穎求得的度數(shù)為_(kāi)_;2.上述思路中的①的理由是__;3.請(qǐng)你參考她的思考問(wèn)題的方法,解決問(wèn)題:已知:直線點(diǎn)在直線上,點(diǎn)在直線上,連接平分平分且所在的直線交于點(diǎn).(1)如圖1,當(dāng)點(diǎn)在點(diǎn)的左側(cè)時(shí),若,則的度數(shù)為;(用含有的式子表示).(2)如圖2,當(dāng)點(diǎn)在點(diǎn)的右側(cè)時(shí),設(shè),直接寫(xiě)出的度數(shù)(用含有的式子表示).14.已知射線射線CD,P為一動(dòng)點(diǎn),AE平分,CE平分,且AE與CE相交于點(diǎn)E.(注意:此題不允許使用三角形,四邊形內(nèi)角和進(jìn)行解答)(1)在圖1中,當(dāng)點(diǎn)P運(yùn)動(dòng)到線段AC上時(shí),.直接寫(xiě)出的度數(shù);(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到圖2的位置時(shí),猜想與之間的關(guān)系,并加以說(shuō)明;(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到圖3的位置時(shí),(2)中的結(jié)論是否還成立?若成立,請(qǐng)說(shuō)明理由:若不成立,請(qǐng)寫(xiě)出與之間的關(guān)系,并加以證明.15.已知點(diǎn)A,B,O在一條直線上,以點(diǎn)O為端點(diǎn)在直線AB的同一側(cè)作射線,,使.(1)如圖①,若平分,求的度數(shù);(2)如圖②,將繞點(diǎn)O按逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng)到某個(gè)位置時(shí),使得所在射線把分成兩個(gè)角.①若,求的度數(shù);②若(n為正整數(shù)),直接用含n的代數(shù)式表示.四、解答題16.如圖,直線,、是、上的兩點(diǎn),直線與、分別交于點(diǎn)、,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)、重合),連接、.(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),,,則_____.(2)若點(diǎn)與點(diǎn)、不在一直線上,試探索、、之間的關(guān)系,并證明你的結(jié)論.17.(1)如圖1,∠BAD的平分線AE與∠BCD的平分線CE交于點(diǎn)E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度數(shù);(2)如圖2,∠BAD的平分線AE與∠BCD的平分線CE交于點(diǎn)E,∠ADC=α°,∠ABC=β°,求∠AEC的度數(shù);(3)如圖3,PQ⊥MN于點(diǎn)O,點(diǎn)A是平面內(nèi)一點(diǎn),AB、AC交MN于B、C兩點(diǎn),AD平分∠BAC交PQ于點(diǎn)D,請(qǐng)問(wèn)的值是否發(fā)生變化?若不變,求出其值;若改變,請(qǐng)說(shuō)明理由.18.如圖,在中,是高,是角平分線,,.()求、和的度數(shù).()若圖形發(fā)生了變化,已知的兩個(gè)角度數(shù)改為:當(dāng),,則__________.當(dāng),時(shí),則__________.當(dāng),時(shí),則__________.當(dāng),時(shí),則__________.()若和的度數(shù)改為用字母和來(lái)表示,你能找到與和之間的關(guān)系嗎?請(qǐng)直接寫(xiě)出你發(fā)現(xiàn)的結(jié)論.19.如圖,△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于A1.(1)當(dāng)∠A為70°時(shí),∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=______°;(2)∠A1BC的角平分線與∠A1CD的角平分線交于A2,∠A2BC與A2CD的平分線交于A3,如此繼續(xù)下去可得A4、…、An,請(qǐng)寫(xiě)出∠A與∠An的數(shù)量關(guān)系______;(3)如圖2,四邊形ABCD中,∠F為∠ABC的角平分線及外角∠DCE的平分線所在的直線構(gòu)成的角,若∠A+∠D=230度,則∠F=______.(4)如圖3,若E為BA延長(zhǎng)線上一動(dòng)點(diǎn),連EC,∠AEC與∠ACE的角平分線交于Q,當(dāng)E滑動(dòng)時(shí)有下面兩個(gè)結(jié)論:①∠Q+∠A1的值為定值;②∠Q-∠A1的值為定值.其中有且只有一個(gè)是正確的,請(qǐng)寫(xiě)出正確的結(jié)論,并求出其值.20.如果三角形的兩個(gè)內(nèi)角與滿足,那么我們稱(chēng)這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說(shuō)法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫(xiě)所有正確說(shuō)法的序號(hào));(3)如圖2,,為直線上兩點(diǎn),點(diǎn)在直線外,且.若是直線上一點(diǎn),且是“準(zhǔn)互余三角形”,請(qǐng)直接寫(xiě)出的度數(shù).【參考答案】一、解答題1.(1)4;(2)不能,理由見(jiàn)解析.【分析】(1)根據(jù)已知正方形的面積求出大正方形的邊長(zhǎng)即可;(2)先設(shè)未知數(shù)根據(jù)面積=14(cm2)列方程,求出長(zhǎng)方形的邊長(zhǎng),將長(zhǎng)方形的長(zhǎng)與正方形邊長(zhǎng)比較大小再解析:(1)4;(2)不能,理由見(jiàn)解析.【分析】(1)根據(jù)已知正方形的面積求出大正方形的邊長(zhǎng)即可;(2)先設(shè)未知數(shù)根據(jù)面積=14(cm2)列方程,求出長(zhǎng)方形的邊長(zhǎng),將長(zhǎng)方形的長(zhǎng)與正方形邊長(zhǎng)比較大小再判斷即可.【詳解】解:(1)兩個(gè)正方形面積之和為:2×8=16(cm2),∴拼成的大正方形的面積=16(cm2),∴大正方形的邊長(zhǎng)是4cm;故答案為:4;(2)設(shè)長(zhǎng)方形紙片的長(zhǎng)為2xcm,寬為xcm,則2x?x=14,解得:,2x=2>4,∴不存在長(zhǎng)寬之比為且面積為的長(zhǎng)方形紙片.【點(diǎn)睛】本題考查了算術(shù)平方根,能夠根據(jù)題意列出算式是解此題的關(guān)鍵.2.(1)棱長(zhǎng)為4;(2)邊長(zhǎng)為:(或)【分析】(1)由立方體的體積為棱長(zhǎng)的立方可以得到答案;(2)用勾股定理直接計(jì)算得到答案.【詳解】解:(1)設(shè)正方體的棱長(zhǎng)為,則,所以,即正方體的棱長(zhǎng)為4.解析:(1)棱長(zhǎng)為4;(2)邊長(zhǎng)為:(或)【分析】(1)由立方體的體積為棱長(zhǎng)的立方可以得到答案;(2)用勾股定理直接計(jì)算得到答案.【詳解】解:(1)設(shè)正方體的棱長(zhǎng)為,則,所以,即正方體的棱長(zhǎng)為4.(2)因?yàn)檎襟w的棱長(zhǎng)為4,所以AB=.【點(diǎn)睛】本題考查的是立方根與算術(shù)平方根的理解與計(jì)算,由實(shí)際的情境去理解問(wèn)題本身就是求一個(gè)數(shù)的立方根與算術(shù)平方根是關(guān)鍵.3.不能截得長(zhǎng)寬之比為,且面積為cm2的長(zhǎng)方形紙片,見(jiàn)解析【分析】根據(jù)拼圖求出大正方形的邊長(zhǎng),再根據(jù)長(zhǎng)方形的長(zhǎng)、寬之比為3:2,計(jì)算長(zhǎng)方形的長(zhǎng)與寬進(jìn)行驗(yàn)證即可.【詳解】解:不能,因?yàn)榇笳叫渭埥馕觯翰荒芙氐瞄L(zhǎng)寬之比為,且面積為cm2的長(zhǎng)方形紙片,見(jiàn)解析【分析】根據(jù)拼圖求出大正方形的邊長(zhǎng),再根據(jù)長(zhǎng)方形的長(zhǎng)、寬之比為3:2,計(jì)算長(zhǎng)方形的長(zhǎng)與寬進(jìn)行驗(yàn)證即可.【詳解】解:不能,因?yàn)榇笳叫渭埰拿娣e為()2+()2=36(cm2),所以大正方形的邊長(zhǎng)為6cm,設(shè)截出的長(zhǎng)方形的長(zhǎng)為3bcm,寬為2bcm,則6b2=30,所以b=(取正值),所以3b=3=>,所以不能截得長(zhǎng)寬之比為3:2,且面積為30cm2的長(zhǎng)方形紙片.【點(diǎn)睛】本題考查了算術(shù)平方根,理解算術(shù)平方根的意義是正確解答的關(guān)鍵.4.不同意,理由見(jiàn)解析【分析】先求得正方形的邊長(zhǎng),然后設(shè)設(shè)長(zhǎng)方形寬為,長(zhǎng)為,然后依據(jù)矩形的面積為20列方程求得的值,從而得到矩形的邊長(zhǎng),從而可作出判斷.【詳解】解:不同意,因?yàn)檎叫蔚拿娣e為,解析:不同意,理由見(jiàn)解析【分析】先求得正方形的邊長(zhǎng),然后設(shè)設(shè)長(zhǎng)方形寬為,長(zhǎng)為,然后依據(jù)矩形的面積為20列方程求得的值,從而得到矩形的邊長(zhǎng),從而可作出判斷.【詳解】解:不同意,因?yàn)檎叫蔚拿娣e為,故邊長(zhǎng)為設(shè)長(zhǎng)方形寬為,則長(zhǎng)為長(zhǎng)方形面積∴,解得(負(fù)值舍去)長(zhǎng)為即長(zhǎng)方形的長(zhǎng)大于正方形的邊長(zhǎng),所以不能裁出符合要求的長(zhǎng)方形紙片【點(diǎn)睛】本題主要考查的是算術(shù)平方根的性質(zhì),熟練掌握算術(shù)平方根的性質(zhì)是解題的關(guān)鍵.5.(1)4米(2)見(jiàn)解析【分析】(1)根據(jù)正方形邊長(zhǎng)與面積間的關(guān)系求解即可;(2)設(shè)長(zhǎng)方形的長(zhǎng)寬分別為米、米,由其面積可得x值,比較長(zhǎng)方形的長(zhǎng)和寬與正方形邊長(zhǎng)的大小可得結(jié)論.【詳解】解解析:(1)4米(2)見(jiàn)解析【分析】(1)根據(jù)正方形邊長(zhǎng)與面積間的關(guān)系求解即可;(2)設(shè)長(zhǎng)方形的長(zhǎng)寬分別為米、米,由其面積可得x值,比較長(zhǎng)方形的長(zhǎng)和寬與正方形邊長(zhǎng)的大小可得結(jié)論.【詳解】解:(1)正方形的面積是16平方米,正方形鋼板的邊長(zhǎng)是米;(2)設(shè)長(zhǎng)方形的長(zhǎng)寬分別為米、米,則,,,,,長(zhǎng)方形長(zhǎng)是米,而正方形的邊長(zhǎng)為4米,所以李師傅不能辦到.【點(diǎn)睛】本題考查了算術(shù)平方根的實(shí)際應(yīng)用,靈活的利用算術(shù)平方根表示正方形和長(zhǎng)方形的邊長(zhǎng)是解題的關(guān)鍵.二、解答題6.(1)見(jiàn)解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過(guò)點(diǎn)E作,延長(zhǎng)DC至Q,過(guò)點(diǎn)M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的解析:(1)見(jiàn)解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過(guò)點(diǎn)E作,延長(zhǎng)DC至Q,過(guò)點(diǎn)M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的含義得出,然后根據(jù)平行線的性質(zhì)及角平分線的定義可推出;設(shè),根據(jù)角的和差可得出,結(jié)合已知條件可求得,最后根據(jù)垂線的含義及平行線的性質(zhì),即可得出答案.【詳解】(1)證明:;(2)過(guò)點(diǎn)E作,延長(zhǎng)DC至Q,過(guò)點(diǎn)M作,,,AF平分FH平分設(shè),.【點(diǎn)睛】本題考查了平行線的判定及性質(zhì),角平分線的定義,能靈活根據(jù)平行線的性質(zhì)和判定進(jìn)行推理是解此題的關(guān)鍵.7.(1)70°;(2),證明見(jiàn)解析;(3)122°【分析】(1)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即可求得;(2)過(guò)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即;(3)設(shè),則,通過(guò)三角形內(nèi)角和得到,由角平分線解析:(1)70°;(2),證明見(jiàn)解析;(3)122°【分析】(1)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即可求得;(2)過(guò)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即;(3)設(shè),則,通過(guò)三角形內(nèi)角和得到,由角平分線定義及得到,求出的值再通過(guò)三角形內(nèi)角和求.【詳解】解:(1)過(guò)作,,,,,,故答案為:;(2).理由如下:過(guò)作,,,,,,,;(3),設(shè),則,,,又,,,平分,,,,即,解得,,.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和判定,正確做出輔助線是解決問(wèn)題的關(guān)鍵.8.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過(guò)O點(diǎn)作OF∥CD,根據(jù)平行線的判定和性質(zhì)可得∠OCD、∠BO′E′的數(shù)量關(guān)系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結(jié)合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD+∠BO′E′=360°-∠AOB,進(jìn)而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過(guò)O點(diǎn)作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【點(diǎn)睛】此題考查了平行線的判定和性質(zhì),平移的性質(zhì),直角的定義,角平分線的定義,正確作出輔助線是解決問(wèn)題的關(guān)鍵.9.(1)是;(2)∠B=∠ACB,證明見(jiàn)解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD解析:(1)是;(2)∠B=∠ACB,證明見(jiàn)解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點(diǎn)睛】此題考查了角平分線和平行線的性質(zhì),熟練掌握角平分線和平行線的有關(guān)性質(zhì)是解題的關(guān)鍵.10.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過(guò)E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;過(guò)F作FH∥AB解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過(guò)E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;過(guò)F作FH∥AB,易得FH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過(guò)E作EH∥AB,如圖1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如圖2,過(guò)F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作平行線的輔助線是解題的關(guān)鍵.三、解答題11.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根據(jù)平行線的性質(zhì)和三角板的角的度數(shù)解答即可;(2)根據(jù)平行線的性質(zhì)和角平分線的定義解答即可;(3)分當(dāng)B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根據(jù)平行線的性質(zhì)和三角板的角的度數(shù)解答即可;(2)根據(jù)平行線的性質(zhì)和角平分線的定義解答即可;(3)分當(dāng)BC∥DE時(shí),當(dāng)BC∥EF時(shí),當(dāng)BC∥DF時(shí),三種情況進(jìn)行解答即可.【詳解】解:(1)作EI∥PQ,如圖,∵PQ∥MN,則PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α=DEA-∠BAC=60°-45°=15°,∵E、C、A三點(diǎn)共線,∴∠β=180°-∠DFE=180°-30°=150°;故答案為:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,F(xiàn)H分別平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)當(dāng)BC∥DE時(shí),如圖1,∵∠D=∠C=90,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;當(dāng)BC∥EF時(shí),如圖2,此時(shí)∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;當(dāng)BC∥DF時(shí),如圖3,此時(shí),AC∥DE,∠CAN=∠DEG=15°,∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.綜上所述,∠BAM的度數(shù)為30°或90°或120°.【點(diǎn)睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點(diǎn).12.(1);(2)①,見(jiàn)解析;②或【分析】(1)由平行線的性質(zhì)可得到:,,再利用角的等量代換換算即可;(2)①設(shè),,利用角平分線的定義和角的等量代換表示出對(duì)比即可;②分類(lèi)討論點(diǎn)在的左右兩側(cè)的情況,解析:(1);(2)①,見(jiàn)解析;②或【分析】(1)由平行線的性質(zhì)可得到:,,再利用角的等量代換換算即可;(2)①設(shè),,利用角平分線的定義和角的等量代換表示出對(duì)比即可;②分類(lèi)討論點(diǎn)在的左右兩側(cè)的情況,運(yùn)用角的等量代換換算即可.【詳解】.解:(1)設(shè)在上有一點(diǎn)N在點(diǎn)A的右側(cè),如圖所示:∵∴,∴∴(2)①.證明:設(shè),.∴.∵為的角平分線,∴.∵,∴.∴.∴.②當(dāng)點(diǎn)在點(diǎn)右側(cè)時(shí),如圖:由①得:又∵∴∵∴當(dāng)點(diǎn)在點(diǎn)左側(cè),在右側(cè)時(shí),如圖:∵為的角平分線∴∵∴,∵∴∴∵∴又∵∴∴當(dāng)點(diǎn)和在點(diǎn)左側(cè)時(shí),設(shè)在上有一點(diǎn)在點(diǎn)的右側(cè)如圖:此時(shí)仍有,∴∴綜合所述:或【點(diǎn)睛】本題主要考查了平行線的性質(zhì),角平分線的定義,角的等量代換等,靈活運(yùn)用平行線的性質(zhì)和角平分線定義等量代換出角的關(guān)系是解題的關(guān)鍵.13.;2.平行于同一條直線的兩條直線平行;3.(1);(2).【分析】1、根據(jù)角度和計(jì)算得到答案;2、根據(jù)平行線的推論解答;3、(1)根據(jù)角平分線的性質(zhì)及1的結(jié)論證明即可得到答案;(2)根據(jù)B解析:;2.平行于同一條直線的兩條直線平行;3.(1);(2).【分析】1、根據(jù)角度和計(jì)算得到答案;2、根據(jù)平行線的推論解答;3、(1)根據(jù)角平分線的性質(zhì)及1的結(jié)論證明即可得到答案;(2)根據(jù)BE平分平分求出,過(guò)點(diǎn)E作EF∥AB,根據(jù)平行線的性質(zhì)求出∠BEF=,,再利用周角求出答案.【詳解】1、過(guò)點(diǎn)作則有因?yàn)樗寓偎运约?;故答案為:?、過(guò)點(diǎn)作則有因?yàn)樗訣F∥CD(平行于同一條直線的兩條直線平行),故答案為:平行于同一條直線的兩條直線平行;3、(1)∵BE平分平分∴,過(guò)點(diǎn)E作EF∥AB,由1可得∠BED=,∴∠BED=,故答案為:;(2)∵BE平分平分∴,過(guò)點(diǎn)E作EF∥AB,則∠ABE=∠BEF=,∵∴EF∥CD,∴,∴,∴.【點(diǎn)睛】此題考查平行線的性質(zhì):兩直線平行內(nèi)錯(cuò)角相等,兩直線平行同旁內(nèi)角互補(bǔ),平行線的推論,正確引出輔助線是解題的關(guān)鍵.14.(1);(2),證明見(jiàn)解析;(3),證明見(jiàn)解析.【分析】(1)過(guò)點(diǎn)作,先根據(jù)平行線的性質(zhì)、平行公理推論可得,從而可得,再根據(jù)平行線的性質(zhì)可得,然后根據(jù)角平分線的定義可得,最后根據(jù)角的和差即可得;解析:(1);(2),證明見(jiàn)解析;(3),證明見(jiàn)解析.【分析】(1)過(guò)點(diǎn)作,先根據(jù)平行線的性質(zhì)、平行公理推論可得,從而可得,再根據(jù)平行線的性質(zhì)可得,然后根據(jù)角平分線的定義可得,最后根據(jù)角的和差即可得;(2)過(guò)點(diǎn)作,過(guò)點(diǎn)作,先根據(jù)(1)可得,再根據(jù)(1)同樣的方法可得,由此即可得出結(jié)論;(3)過(guò)點(diǎn)作,過(guò)點(diǎn)作,先根據(jù)(1)可得,再根據(jù)平行線的性質(zhì)、平行公理推論可得,然后根據(jù)角的和差、等量代換即可得出結(jié)論.【詳解】解:(1)如圖,過(guò)點(diǎn)作,,,,,,又,且點(diǎn)運(yùn)動(dòng)到線段上,,平分,平分,,;(2)猜想,證明如下:如圖,過(guò)點(diǎn)作,過(guò)點(diǎn)作,由(1)已得:,同理可得:,;(3),證明如下:如圖,過(guò)點(diǎn)作,過(guò)點(diǎn)作,由(1)已得:,即,,,即,,,,即,,,,,即.【點(diǎn)睛】本題考查了平行線的性質(zhì)、平行公理推論、角平分線的定義等知識(shí)點(diǎn),熟練掌握平行線的性質(zhì)是解題關(guān)鍵.15.(1);(2)①;②.【分析】(1)依據(jù)角平分線的定義可求得,再依據(jù)角的和差依次可求得和,根據(jù)鄰補(bǔ)角的性質(zhì)可求得結(jié)論;(2)①根據(jù)角相等和角的和差可得∠EOC=∠BOD,再根據(jù)比例關(guān)系可得,最解析:(1);(2)①;②.【分析】(1)依據(jù)角平分線的定義可求得,再依據(jù)角的和差依次可求得和,根據(jù)鄰補(bǔ)角的性質(zhì)可求得結(jié)論;(2)①根據(jù)角相等和角的和差可得∠EOC=∠BOD,再根據(jù)比例關(guān)系可得,最后依據(jù)角的和差和鄰補(bǔ)角的性質(zhì)可求得結(jié)論;②根據(jù)角相等和角的和差可得∠EOC=∠BOD,再根據(jù)比例關(guān)系可得,最后依據(jù)角的和差和鄰補(bǔ)角的性質(zhì)可求得結(jié)論.【詳解】解:(1)∵平分,,∴,∴,∴,∴;(2)①∵,∴∠EOC+∠COD=∠BOD+∠COD,∴∠EOC=∠BOD,∵,,∴,∴,∴,∴;②∵,∴∠EOC+∠COD=∠BOD+∠COD,∴∠EOC=∠BOD,∵,,∴,∴,∴,∴.【點(diǎn)睛】本題考查鄰補(bǔ)角的計(jì)算,角的和差,角平分線的有關(guān)計(jì)算.能正確識(shí)圖,利用角的和差求得相應(yīng)角的度數(shù)是解題關(guān)鍵.四、解答題16.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見(jiàn)詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見(jiàn)詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計(jì)算∠PFD即可;(2)根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí);②當(dāng)點(diǎn)P在AB上方時(shí);③當(dāng)點(diǎn)P在CD下方時(shí),分別求出∠AEP、∠EPF、∠CFP之間的關(guān)系即可.【詳解】(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關(guān)系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí),過(guò)點(diǎn)P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當(dāng)點(diǎn)P在AB上方時(shí),如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當(dāng)點(diǎn)P在CD下方時(shí),∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關(guān)系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點(diǎn)睛】本題考查了平行線的性質(zhì),外角的性質(zhì),掌握平行線的性質(zhì)是解題的關(guān)鍵,注意分情況討論問(wèn)題.17.(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內(nèi)角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質(zhì),可得∠ECD=∠ECB=∠解析:(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內(nèi)角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質(zhì),可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,則可得∠E=(∠D+∠B),繼而求得答案;(2)首先延長(zhǎng)BC交AD于點(diǎn)F,由三角形外角的性質(zhì),可得∠BCD=∠B+∠BAD+∠D,又由角平分線的性質(zhì),即可求得答案.(3)由三角形內(nèi)角和定理,可得,利用角平分線的性質(zhì)與三角形的外角的性質(zhì)可得答案.【詳解】解:(1)∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E=(∠D+∠B),∵∠ADC=50°,∠ABC=40°,∴∠AEC=×(50°+40°)=45°;(2)延長(zhǎng)BC交AD于點(diǎn)F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD=∠B+∠BAE-(∠B+∠BAD+∠D)=(∠B-∠D),∠ADC=α°,∠ABC=β°,即∠AEC=(3)的值不發(fā)生變化,理由如下:如圖,記與交于,與交于,①,②,①-②得:AD平分∠BAC,【點(diǎn)睛】此題考查了三角形內(nèi)角和定理、三角形外角的性質(zhì)以及角平分線的定義.此題難度較大,注意掌握整體思想與數(shù)形結(jié)合思想的應(yīng)用.18.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時(shí),;當(dāng)時(shí),.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時(shí),;當(dāng)時(shí),.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);(2)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),則前三問(wèn)利用即可得出答案,第4問(wèn)利用即可得出答案;(3)按照(2)的方法,將相應(yīng)的數(shù)換成字母即可得出答案.【詳解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,.(3)當(dāng)時(shí),即時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng)時(shí),即時(shí),∵,,∴.∵平分,∴.∵是高,,,;綜上所述,當(dāng)時(shí),;當(dāng)時(shí),.【點(diǎn)睛】本題主要考查三角形內(nèi)角和定理和三角形的角平分線,高,掌握三角形內(nèi)角和定理和直角三角形兩銳角互余是解題的關(guān)鍵.19.(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值為定值正確,Q+∠A1=180°.【分析】(1)根據(jù)角平分線的定義可得∠A1BC=∠ABC,∠A1CD解析:(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值為定值正確,Q+∠A1=180°.【分析】(1)根據(jù)角平分線的定義可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分別平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出規(guī)律;(3)先根據(jù)四邊形內(nèi)角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根據(jù)內(nèi)角與外角的關(guān)系和角平分線的定義得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,從而得出結(jié)論;(4)依然要用三角形的外角性質(zhì)求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形內(nèi)角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的關(guān)系.【詳解】解:(1)當(dāng)∠A為70°時(shí),∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、C
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 11《葡萄溝》教學(xué)設(shè)計(jì)-2024-2025學(xué)年統(tǒng)編版二年級(jí)語(yǔ)文上冊(cè)
- 《自救技能get》主題班會(huì)教學(xué)設(shè)計(jì)
- 2024新教材高中地理 第一章 人口與地理環(huán)境 第一節(jié) 人口分布教學(xué)設(shè)計(jì) 湘教版必修第二冊(cè)
- 13 貓 教學(xué)設(shè)計(jì)-2024-2025學(xué)年語(yǔ)文四年級(jí)下冊(cè)統(tǒng)編版
- 2024-2025學(xué)年高中物理 第2章 3 勻變速直線運(yùn)動(dòng)的位移與時(shí)間的關(guān)系教學(xué)設(shè)計(jì) 新人教版必修1
- 13《人物描寫(xiě)一組》 教學(xué)設(shè)計(jì)-2023-2024學(xué)年語(yǔ)文五年級(jí)下冊(cè)統(tǒng)編版
- 肥胖患者的氣道管理
- Unit 1 My school Part B Read and write Part C Story time(教學(xué)設(shè)計(jì))-2024-2025學(xué)年人教PEP版英語(yǔ)四年級(jí)下冊(cè)
- 2023六年級(jí)數(shù)學(xué)下冊(cè) 一 歡樂(lè)農(nóng)家游-百分?jǐn)?shù)(二)信息窗2 青島假日游-百分?jǐn)?shù)實(shí)際問(wèn)題第1課時(shí)教學(xué)設(shè)計(jì) 青島版六三制
- Unit 4 Plants around us 單元整體(教學(xué)設(shè)計(jì))-2024-2025學(xué)年人教PEP版(2024)英語(yǔ)三年級(jí)上冊(cè)
- 食品安全法律法規(guī)和標(biāo)準(zhǔn)要求
- 護(hù)工生活護(hù)理及排泄護(hù)理
- 2016-2023年山西工程職業(yè)學(xué)院高職單招(英語(yǔ)/數(shù)學(xué)/語(yǔ)文)筆試歷年參考題庫(kù)含答案解析
- 產(chǎn)房健康宣教幻燈片
- 消防防排煙系統(tǒng)培訓(xùn)課件
- 股權(quán)激勵(lì)實(shí)戰(zhàn)手冊(cè)
- 中國(guó)傳統(tǒng)飲食文化-《糯米糍粑》的制作與傳統(tǒng)意義
- 河道整治投標(biāo)書(shū)完整版(技術(shù)標(biāo))
- 直播電商行業(yè)現(xiàn)狀、問(wèn)題與未來(lái)發(fā)展策略探討
- YBJ-PS03-2004埋地?zé)o壓預(yù)制混凝土排水圓形管管基及接口
- 基本醫(yī)療保險(xiǎn)異地就醫(yī)備案?jìng)€(gè)人承諾書(shū)【模板】
評(píng)論
0/150
提交評(píng)論