版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題考試試卷及答案一、解答題1.(1)小麗計(jì)劃在母親節(jié)那天送份禮物媽媽,特設(shè)計(jì)一個(gè)表面積為12dm2的正方體紙盒,則這個(gè)正方體的棱長(zhǎng)是.(2)為了增加小區(qū)的綠化面積,幸福公園準(zhǔn)備修建一個(gè)面積121πm2的草坪,草坪周?chē)没h笆圍繞.現(xiàn)從對(duì)稱美的角度考慮有甲,乙兩種方案,甲方案:建成正方形;乙方案:建成圓形的.如果從節(jié)省籬笆費(fèi)用的角度考慮,你會(huì)選擇哪種方案?請(qǐng)說(shuō)明理由;(3)在(2)的方案中,審批時(shí)發(fā)現(xiàn)修如此大的草坪,目的是親近自然,若按上方案就沒(méi)達(dá)到目的,因此建議用如圖的設(shè)計(jì)方案:正方形里修三條小路,三條小路的寬度是一樣,這樣草坪的實(shí)際面積就減少了21πm2,請(qǐng)你根據(jù)此方案求出各小路的寬度(π取整數(shù)).2.如圖是一塊正方形紙片.(1)如圖1,若正方形紙片的面積為1dm2,則此正方形的對(duì)角線AC的長(zhǎng)為dm.(2)若一圓的面積與這個(gè)正方形的面積都是2πcm2,設(shè)圓的周長(zhǎng)為C圓,正方形的周長(zhǎng)為C正,則C圓C正(填“=”或“<”或“>”號(hào))(3)如圖2,若正方形的面積為16cm2,李明同學(xué)想沿這塊正方形邊的方向裁出一塊面積為12cm2的長(zhǎng)方形紙片,使它的長(zhǎng)和寬之比為3:2,他能裁出嗎?請(qǐng)說(shuō)明理由?3.(1)如圖,分別把兩個(gè)邊長(zhǎng)為的小正方形沿一條對(duì)角線裁成個(gè)小三角形拼成一個(gè)大正方形,則大正方形的邊長(zhǎng)為_(kāi)______;(2)若一個(gè)圓的面積與一個(gè)正方形的面積都是,設(shè)圓的周長(zhǎng)為,正方形的周長(zhǎng)為,則_____(填“”或“”或“”號(hào));(3)如圖,若正方形的面積為,李明同學(xué)想沿這塊正方形邊的方向裁出一塊面積為的長(zhǎng)方形紙片,使它的長(zhǎng)和寬之比為,他能裁出嗎?請(qǐng)說(shuō)明理由?4.如圖用兩個(gè)邊長(zhǎng)為cm的小正方形紙片拼成一個(gè)大的正方形紙片,沿著大正方形紙片的邊的方向截出一個(gè)長(zhǎng)方形紙片,能否使截得的長(zhǎng)方形紙片長(zhǎng)寬之比為,且面積為cm2?請(qǐng)說(shuō)明理由.5.某市在招商引資期間,把已倒閉的油泵廠出租給外地某投資商,該投資商為減少固定資產(chǎn)投資,將原來(lái)的400m2的正方形場(chǎng)地改建成300m2的長(zhǎng)方形場(chǎng)地,且其長(zhǎng)、寬的比為5:3.(1)求原來(lái)正方形場(chǎng)地的周長(zhǎng);(2)如果把原來(lái)的正方形場(chǎng)地的鐵柵欄圍墻全部利用,圍成新場(chǎng)地的長(zhǎng)方形圍墻,那么這些鐵柵欄是否夠用?試?yán)盟鶎W(xué)知識(shí)說(shuō)明理由.二、解答題6.如圖1,點(diǎn)在直線、之間,且.(1)求證:;(2)若點(diǎn)是直線上的一點(diǎn),且,平分交直線于點(diǎn),若,求的度數(shù);(3)如圖3,點(diǎn)是直線、外一點(diǎn),且滿足,,與交于點(diǎn).已知,且,則的度數(shù)為_(kāi)_____(請(qǐng)直接寫(xiě)出答案,用含的式子表示).7.如圖1,//,點(diǎn)、分別在、上,點(diǎn)在直線、之間,且.(1)求的值;(2)如圖2,直線分別交、的角平分線于點(diǎn)、,直接寫(xiě)出的值;(3)如圖3,在內(nèi),;在內(nèi),,直線分別交、分別于點(diǎn)、,且,直接寫(xiě)出的值.8.綜合與探究(問(wèn)題情境)王老師組織同學(xué)們開(kāi)展了探究三角之間數(shù)量關(guān)系的數(shù)學(xué)活動(dòng)(1)如圖1,,點(diǎn)、分別為直線、上的一點(diǎn),點(diǎn)為平行線間一點(diǎn),請(qǐng)直接寫(xiě)出、和之間的數(shù)量關(guān)系;(問(wèn)題遷移)(2)如圖2,射線與射線交于點(diǎn),直線,直線分別交、于點(diǎn)、,直線分別交、于點(diǎn)、,點(diǎn)在射線上運(yùn)動(dòng),①當(dāng)點(diǎn)在、(不與、重合)兩點(diǎn)之間運(yùn)動(dòng)時(shí),設(shè),.則,,之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.②若點(diǎn)不在線段上運(yùn)動(dòng)時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)都不重合),請(qǐng)你畫(huà)出滿足條件的所有圖形并直接寫(xiě)出,,之間的數(shù)量關(guān)系.9.已知,AB∥CD.點(diǎn)M在AB上,點(diǎn)N在CD上.(1)如圖1中,∠BME、∠E、∠END的數(shù)量關(guān)系為:;(不需要證明)如圖2中,∠BMF、∠F、∠FND的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度數(shù);(3)如圖4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,則∠FEQ的大小是否發(fā)生變化,若變化,請(qǐng)說(shuō)明理由,若不變化,求出∠FEQ的度數(shù).10.已知,點(diǎn)在與之間.(1)圖1中,試說(shuō)明:;(2)圖2中,的平分線與的平分線相交于點(diǎn),請(qǐng)利用(1)的結(jié)論說(shuō)明:.(3)圖3中,的平分線與的平分線相交于點(diǎn),請(qǐng)直接寫(xiě)出與之間的數(shù)量關(guān)系.三、解答題11.[感知]如圖①,,求的度數(shù).小樂(lè)想到了以下方法,請(qǐng)幫忙完成推理過(guò)程.解:(1)如圖①,過(guò)點(diǎn)P作.∴(_____________),∴,∴________(平行于同一條直線的兩直線平行),∴_____________(兩直線平行,同旁內(nèi)角互補(bǔ)),∴,∴,∴,即.[探究]如圖②,,求的度數(shù);[應(yīng)用](1)如圖③,在[探究]的條件下,的平分線和的平分線交于點(diǎn)G,則的度數(shù)是_________o.(2)已知直線,點(diǎn)A,B在直線a上,點(diǎn)C,D在直線b上(點(diǎn)C在點(diǎn)D的左側(cè)),連接,若平分平分,且所在的直線交于點(diǎn)E.設(shè),請(qǐng)直接寫(xiě)出的度數(shù)(用含的式子表示).12.(1)光線從空氣中射入水中會(huì)產(chǎn)生折射現(xiàn)象,同時(shí)光線從水中射入空氣中也會(huì)產(chǎn)生折射現(xiàn)象,如圖1,光線a從空氣中射入水中,再?gòu)乃猩淙肟諝庵校纬晒饩€b,根據(jù)光學(xué)知識(shí)有,請(qǐng)判斷光線a與光線b是否平行,并說(shuō)明理由.(2)光線照射到鏡面會(huì)產(chǎn)生反射現(xiàn)象,由光學(xué)知識(shí),入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,如圖2有一口井,已知入射光線與水平線的夾角為,問(wèn)如何放置平面鏡,可使反射光線b正好垂直照射到井底?(即求與水平線的夾角)(3)如圖3,直線上有兩點(diǎn)A、C,分別引兩條射線、.,,射線、分別繞A點(diǎn),C點(diǎn)以1度/秒和3度/秒的速度同時(shí)順時(shí)針轉(zhuǎn)動(dòng),設(shè)時(shí)間為t,在射線轉(zhuǎn)動(dòng)一周的時(shí)間內(nèi),是否存在某時(shí)刻,使得與平行?若存在,求出所有滿足條件的時(shí)間t.13.已知:三角形ABC和三角形DEF位于直線MN的兩側(cè)中,直線MN經(jīng)過(guò)點(diǎn)C,且,其中,,,點(diǎn)E、F均落在直線MN上.(1)如圖1,當(dāng)點(diǎn)C與點(diǎn)E重合時(shí),求證:;聰明的小麗過(guò)點(diǎn)C作,并利用這條輔助線解決了問(wèn)題.請(qǐng)你根據(jù)小麗的思考,寫(xiě)出解決這一問(wèn)題的過(guò)程.(2)將三角形DEF沿著NM的方向平移,如圖2,求證:;(3)將三角形DEF沿著NM的方向平移,使得點(diǎn)E移動(dòng)到點(diǎn),畫(huà)出平移后的三角形DEF,并回答問(wèn)題,若,則________.(用含的代數(shù)式表示)14.如圖1,,E是、之間的一點(diǎn).(1)判定,與之間的數(shù)量關(guān)系,并證明你的結(jié)論;(2)如圖2,若、的兩條平分線交于點(diǎn)F.直接寫(xiě)出與之間的數(shù)量關(guān)系;(3)將圖2中的射線沿翻折交于點(diǎn)G得圖3,若的余角等于的補(bǔ)角,求的大?。?5.如圖1,D是△ABC延長(zhǎng)線上的一點(diǎn),CEAB.(1)求證:∠ACD=∠A+∠B;(2)如圖2,過(guò)點(diǎn)A作BC的平行線交CE于點(diǎn)H,CF平分∠ECD,F(xiàn)A平分∠HAD,若∠BAD=70°,求∠F的度數(shù).(3)如圖3,AHBD,G為CD上一點(diǎn),Q為AC上一點(diǎn),GR平分∠QGD交AH于R,QN平分∠AQG交AH于N,QMGR,猜想∠MQN與∠ACB的關(guān)系,說(shuō)明理由.四、解答題16.(生活常識(shí))射到平面鏡上的光線(入射光線)和變向后的光線(反射光線)與平面鏡所夾的角相等.如圖1,MN是平面鏡,若入射光線AO與水平鏡面夾角為∠1,反射光線OB與水平鏡面夾角為∠2,則∠1=∠2.(現(xiàn)象解釋)如圖2,有兩塊平面鏡OM,ON,且OM⊥ON,入射光線AB經(jīng)過(guò)兩次反射,得到反射光線CD.求證AB∥CD.(嘗試探究)如圖3,有兩塊平面鏡OM,ON,且∠MON=55,入射光線AB經(jīng)過(guò)兩次反射,得到反射光線CD,光線AB與CD相交于點(diǎn)E,求∠BEC的大小.(深入思考)如圖4,有兩塊平面鏡OM,ON,且∠MONα,入射光線AB經(jīng)過(guò)兩次反射,得到反射光線CD,光線AB與CD所在的直線相交于點(diǎn)E,∠BED=β,α與β之間滿足的等量關(guān)系是.(直接寫(xiě)出結(jié)果)17.如圖1,已知線段AB、CD相交于點(diǎn)O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.試解答下列問(wèn)題:(1)仔細(xì)觀察,在圖2中有個(gè)以線段AC為邊的“8字形”;(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數(shù);(3)在圖2中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問(wèn)∠P與∠C、∠B之間存在著怎樣的數(shù)量關(guān)系(用α、β表示∠P),并說(shuō)明理由;(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為.18.如果三角形的兩個(gè)內(nèi)角與滿足,那么我們稱這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說(shuō)法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫(xiě)所有正確說(shuō)法的序號(hào));(3)如圖2,,為直線上兩點(diǎn),點(diǎn)在直線外,且.若是直線上一點(diǎn),且是“準(zhǔn)互余三角形”,請(qǐng)直接寫(xiě)出的度數(shù).19.已知ABCD,點(diǎn)E是平面內(nèi)一點(diǎn),∠CDE的角平分線與∠ABE的角平分線交于點(diǎn)F.(1)若點(diǎn)E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關(guān)系并證明你的結(jié)論;(2)若點(diǎn)E的位置如圖2所示,∠F與∠BED滿足的數(shù)量關(guān)系式是.(3)若點(diǎn)E的位置如圖3所示,∠CDE為銳角,且,設(shè)∠F=α,則α的取值范圍為.20.問(wèn)題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).小明的思路是:如圖2,過(guò)P作PE∥AB,通過(guò)平行線性質(zhì),可得∠APC=50°+60°=110°.問(wèn)題遷移:(1)如圖3,AD∥BC,點(diǎn)P在射線OM上運(yùn)動(dòng),當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;(2)在(1)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫(xiě)出∠CPD、∠α、∠β間的數(shù)量關(guān)系.【參考答案】一、解答題1.(1)dm;(2)從節(jié)省籬笆費(fèi)用的角度考慮,選擇乙方案建成圓形;(3)根據(jù)此方案求出小路的寬度為【分析】(1)先求得正方體的一個(gè)面的面積,然后依據(jù)算術(shù)平方根的定義求解即可;(2)根據(jù)正方形的周解析:(1)dm;(2)從節(jié)省籬笆費(fèi)用的角度考慮,選擇乙方案建成圓形;(3)根據(jù)此方案求出小路的寬度為【分析】(1)先求得正方體的一個(gè)面的面積,然后依據(jù)算術(shù)平方根的定義求解即可;(2)根據(jù)正方形的周長(zhǎng)公式以及圓形的周長(zhǎng)公式即可求出答案;(3)根據(jù)圖形的平移求解.【詳解】解:(1)∵正方體有6個(gè)面且每個(gè)面都相等,∴正方體的一個(gè)面的面積=2dm2.∴正方形的棱長(zhǎng)=dm;故答案為:dm;(2)甲方案:設(shè)正方形的邊長(zhǎng)為xm,則x2=121∴x=11∴正方形的周長(zhǎng)為:4x=44m乙方案:設(shè)圓的半徑rm為,則r2==121∴r=11∴圓的周長(zhǎng)為:2=22m∴442222(2-∵4>∴2∴∴正方形的周長(zhǎng)比圓的周長(zhǎng)大故從節(jié)省籬笆費(fèi)用的角度考慮,選擇乙方案建成圓形;(3)依題意可進(jìn)行如圖所示的平移,設(shè)小路的寬度為ym,則(11–y)2=12121∴11–y=10∴y=∵取整數(shù)∴y=答:根據(jù)此方案求出小路的寬度為;【點(diǎn)睛】本題主要考查的是算術(shù)平方根的定義,熟練掌握正方形的性質(zhì)以及平移的性質(zhì)是解題的關(guān)鍵;2.(1);(2)<;(3)不能;理由見(jiàn)解析.【分析】(1)由正方形面積,易求得正方形邊長(zhǎng),再由勾股定理求對(duì)角線長(zhǎng);(2)由圓面積公式,和正方形面積可求周長(zhǎng),比較兩數(shù)大小可以采用比商法;(3)采解析:(1);(2)<;(3)不能;理由見(jiàn)解析.【分析】(1)由正方形面積,易求得正方形邊長(zhǎng),再由勾股定理求對(duì)角線長(zhǎng);(2)由圓面積公式,和正方形面積可求周長(zhǎng),比較兩數(shù)大小可以采用比商法;(3)采用方程思想求出長(zhǎng)方形的長(zhǎng)邊,與正方形邊長(zhǎng)比較大小即可.【詳解】解:(1)由已知AB2=1,則AB=1,由勾股定理,AC=;故答案為:.(2)由圓面積公式,可得圓半徑為,周長(zhǎng)為,正方形周長(zhǎng)為4.;即C圓<C正;故答案為:<(3)不能;由已知設(shè)長(zhǎng)方形長(zhǎng)和寬為3xcm和2xcm∴長(zhǎng)方形面積為:2x?3x=12解得x=∴長(zhǎng)方形長(zhǎng)邊為3>4∴他不能裁出.【點(diǎn)睛】本題主要考查了算術(shù)平方根在正方形、圓、長(zhǎng)方形面積中的應(yīng)用,靈活的進(jìn)行算術(shù)平方根的計(jì)算與無(wú)理數(shù)大小比較是解題的關(guān)鍵.3.(1);(2);(3)不能裁剪出,詳見(jiàn)解析【分析】(1)根據(jù)所拼成的大正方形的面積為2即可求得大正方形的邊長(zhǎng);(2)由圓和正方形的面積公式可分別求的圓的半徑及正方形的邊長(zhǎng),進(jìn)而可求得圓和正方形解析:(1);(2);(3)不能裁剪出,詳見(jiàn)解析【分析】(1)根據(jù)所拼成的大正方形的面積為2即可求得大正方形的邊長(zhǎng);(2)由圓和正方形的面積公式可分別求的圓的半徑及正方形的邊長(zhǎng),進(jìn)而可求得圓和正方形的周長(zhǎng),利用作商法比較這兩數(shù)大小即可;(3)利用方程思想求出長(zhǎng)方形的長(zhǎng)邊,與正方形邊長(zhǎng)比較大小即可;【詳解】解:(1)∵小正方形的邊長(zhǎng)為1cm,∴小正方形的面積為1cm2,∴兩個(gè)小正方形的面積之和為2cm2,即所拼成的大正方形的面積為2cm2,∴大正方形的邊長(zhǎng)為cm,(2)∵,∴,∴,設(shè)正方形的邊長(zhǎng)為a∵,∴,∴,∴故答案為:<;(3)解:不能裁剪出,理由如下:∵長(zhǎng)方形紙片的長(zhǎng)和寬之比為,∴設(shè)長(zhǎng)方形紙片的長(zhǎng)為,寬為,則,整理得:,∴,∵450>400,∴,∴,∴長(zhǎng)方形紙片的長(zhǎng)大于正方形的邊長(zhǎng),∴不能裁出這樣的長(zhǎng)方形紙片.【點(diǎn)睛】本題通過(guò)圓和正方形的面積考查了對(duì)算術(shù)平方根的應(yīng)用,主要是對(duì)學(xué)生無(wú)理數(shù)運(yùn)算及比較大小進(jìn)行了考查.4.不能截得長(zhǎng)寬之比為,且面積為cm2的長(zhǎng)方形紙片,見(jiàn)解析【分析】根據(jù)拼圖求出大正方形的邊長(zhǎng),再根據(jù)長(zhǎng)方形的長(zhǎng)、寬之比為3:2,計(jì)算長(zhǎng)方形的長(zhǎng)與寬進(jìn)行驗(yàn)證即可.【詳解】解:不能,因?yàn)榇笳叫渭埥馕觯翰荒芙氐瞄L(zhǎng)寬之比為,且面積為cm2的長(zhǎng)方形紙片,見(jiàn)解析【分析】根據(jù)拼圖求出大正方形的邊長(zhǎng),再根據(jù)長(zhǎng)方形的長(zhǎng)、寬之比為3:2,計(jì)算長(zhǎng)方形的長(zhǎng)與寬進(jìn)行驗(yàn)證即可.【詳解】解:不能,因?yàn)榇笳叫渭埰拿娣e為()2+()2=36(cm2),所以大正方形的邊長(zhǎng)為6cm,設(shè)截出的長(zhǎng)方形的長(zhǎng)為3bcm,寬為2bcm,則6b2=30,所以b=(取正值),所以3b=3=>,所以不能截得長(zhǎng)寬之比為3:2,且面積為30cm2的長(zhǎng)方形紙片.【點(diǎn)睛】本題考查了算術(shù)平方根,理解算術(shù)平方根的意義是正確解答的關(guān)鍵.5.(1)原來(lái)正方形場(chǎng)地的周長(zhǎng)為80m;(2)這些鐵柵欄夠用.【分析】(1)正方形邊長(zhǎng)=面積的算術(shù)平方根,周長(zhǎng)=邊長(zhǎng)×4,由此解答即可;(2)長(zhǎng)、寬的比為5:3,設(shè)這個(gè)長(zhǎng)方形場(chǎng)地寬為3am,則長(zhǎng)為解析:(1)原來(lái)正方形場(chǎng)地的周長(zhǎng)為80m;(2)這些鐵柵欄夠用.【分析】(1)正方形邊長(zhǎng)=面積的算術(shù)平方根,周長(zhǎng)=邊長(zhǎng)×4,由此解答即可;(2)長(zhǎng)、寬的比為5:3,設(shè)這個(gè)長(zhǎng)方形場(chǎng)地寬為3am,則長(zhǎng)為5am,計(jì)算出長(zhǎng)方形的長(zhǎng)與寬可知長(zhǎng)方形周長(zhǎng),同理可得正方形的周長(zhǎng),比較大小可知是否夠用.【詳解】解:(1)=20(m),4×20=80(m),答:原來(lái)正方形場(chǎng)地的周長(zhǎng)為80m;(2)設(shè)這個(gè)長(zhǎng)方形場(chǎng)地寬為3am,則長(zhǎng)為5am.由題意有:3a×5a=300,解得:a=±,∵3a表示長(zhǎng)度,∴a>0,∴a=,∴這個(gè)長(zhǎng)方形場(chǎng)地的周長(zhǎng)為2(3a+5a)=16a=16(m),∵80=16×5=16×>16,∴這些鐵柵欄夠用.【點(diǎn)睛】本題考查了算術(shù)平方根的實(shí)際應(yīng)用,解答本題的關(guān)鍵是明確題意,求出長(zhǎng)方形和正方形的周長(zhǎng).二、解答題6.(1)見(jiàn)解析;(2)10°;(3)【分析】(1)過(guò)點(diǎn)E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯(cuò)角相等,得出結(jié)合已知條件,得出即可證明;(2)過(guò)點(diǎn)E作HE∥CD,設(shè)由(1)得AB∥CD解析:(1)見(jiàn)解析;(2)10°;(3)【分析】(1)過(guò)點(diǎn)E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯(cuò)角相等,得出結(jié)合已知條件,得出即可證明;(2)過(guò)點(diǎn)E作HE∥CD,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,由平行線的性質(zhì),得出再由平分,得出則,則可列出關(guān)于x和y的方程,即可求得x,即的度數(shù);(3)過(guò)點(diǎn)N作NP∥CD,過(guò)點(diǎn)M作QM∥CD,由(1)得AB∥CD,則NP∥CD∥AB∥QM,根據(jù)和,得出根據(jù)CD∥PN∥QM,DE∥NB,得出即根據(jù)NP∥AB,得出再由,得出由AB∥QM,得出因?yàn)?,代入的式子即可求出.【詳解】?)過(guò)點(diǎn)E作EF∥CD,如圖,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)過(guò)點(diǎn)E作HE∥CD,如圖,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)過(guò)點(diǎn)N作NP∥CD,過(guò)點(diǎn)M作QM∥CD,如圖,由(1)得AB∥CD,則NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義,解決問(wèn)題的關(guān)鍵是作平行線構(gòu)造相等的角,利用兩直線平行,內(nèi)錯(cuò)角相等,同位角相等來(lái)計(jì)算和推導(dǎo)角之間的關(guān)系.7.(1);(2)的值為40°;(3).【分析】(1)過(guò)點(diǎn)O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質(zhì)可求解;(2)過(guò)點(diǎn)M作MK∥AB,過(guò)點(diǎn)N作NH∥CD,由角平分線的定義可設(shè)∠BEM解析:(1);(2)的值為40°;(3).【分析】(1)過(guò)點(diǎn)O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質(zhì)可求解;(2)過(guò)點(diǎn)M作MK∥AB,過(guò)點(diǎn)N作NH∥CD,由角平分線的定義可設(shè)∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,進(jìn)而求解;(3)設(shè)直線FK與EG交于點(diǎn)H,F(xiàn)K與AB交于點(diǎn)K,根據(jù)平行線的性質(zhì)即三角形外角的性質(zhì)及,可得,結(jié)合,可得即可得關(guān)于n的方程,計(jì)算可求解n值.【詳解】證明:過(guò)點(diǎn)O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:過(guò)點(diǎn)M作MK∥AB,過(guò)點(diǎn)N作NH∥CD,∵EM平分∠BEO,F(xiàn)N平分∠CFO,設(shè)∵∴∴x-y=40°,∵M(jìn)K∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,故的值為40°;(3)如圖,設(shè)直線FK與EG交于點(diǎn)H,F(xiàn)K與AB交于點(diǎn)K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO內(nèi),∴,∵∴∴即∴解得.經(jīng)檢驗(yàn),符合題意,故答案為:.【點(diǎn)睛】本題主要考查平行線的性質(zhì),角平分線的定義,靈活運(yùn)用平行線的性質(zhì)是解題的關(guān)鍵.8.(1);(2)①,理由見(jiàn)解析;②圖見(jiàn)解析,或【分析】(1)作PQ∥EF,由平行線的性質(zhì),即可得到答案;(2)①過(guò)作交于,由平行線的性質(zhì),得到,,即可得到答案;②根據(jù)題意,可對(duì)點(diǎn)P進(jìn)行分類討論解析:(1);(2)①,理由見(jiàn)解析;②圖見(jiàn)解析,或【分析】(1)作PQ∥EF,由平行線的性質(zhì),即可得到答案;(2)①過(guò)作交于,由平行線的性質(zhì),得到,,即可得到答案;②根據(jù)題意,可對(duì)點(diǎn)P進(jìn)行分類討論:當(dāng)點(diǎn)在延長(zhǎng)線時(shí);當(dāng)在之間時(shí);與①同理,利用平行線的性質(zhì),即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過(guò)作交于,∵,∴,∴,,∴;②當(dāng)點(diǎn)在延長(zhǎng)線時(shí),如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當(dāng)在之間時(shí),如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點(diǎn)睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是熟練掌握兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行內(nèi)錯(cuò)角相等,從而得到角的關(guān)系.9.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過(guò)E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;過(guò)F作FH∥AB解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過(guò)E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;過(guò)F作FH∥AB,易得FH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過(guò)E作EH∥AB,如圖1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如圖2,過(guò)F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作平行線的輔助線是解題的關(guān)鍵.10.(1)說(shuō)明過(guò)程請(qǐng)看解答;(2)說(shuō)明過(guò)程請(qǐng)看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過(guò)點(diǎn)E作EG∥AB,則∠BEG=∠ABE,根據(jù)AB∥CD,EG∥AB,所以CD∥EG,解析:(1)說(shuō)明過(guò)程請(qǐng)看解答;(2)說(shuō)明過(guò)程請(qǐng)看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過(guò)點(diǎn)E作EG∥AB,則∠BEG=∠ABE,根據(jù)AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,進(jìn)而可得∠BED=∠ABE+∠CDE;(2)圖2中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,結(jié)合(1)的結(jié)論即可說(shuō)明:∠BED=2∠BFD;(3)圖3中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,過(guò)點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合(1)的結(jié)論即可說(shuō)明∠BED與∠BFD之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,過(guò)點(diǎn)E作EG∥AB,則∠BEG=∠ABE,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)圖2中,因?yàn)锽F平分∠ABE,所以∠ABE=2∠ABF,因?yàn)镈F平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因?yàn)锳B∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.圖3中,過(guò)點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因?yàn)锽F平分∠ABE,所以∠ABE=2∠ABF,因?yàn)镈F平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因?yàn)锳B∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【點(diǎn)睛】本題考查了平行線的性質(zhì),解決本題的關(guān)鍵是掌握平行線的性質(zhì).三、解答題11.[感知]見(jiàn)解析;[探究]70°;[應(yīng)用](1)35;(2)或【分析】[感知]過(guò)點(diǎn)P作PM∥AB,根據(jù)平行線的性質(zhì)得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度數(shù),結(jié)合∠1可得結(jié)果;解析:[感知]見(jiàn)解析;[探究]70°;[應(yīng)用](1)35;(2)或【分析】[感知]過(guò)點(diǎn)P作PM∥AB,根據(jù)平行線的性質(zhì)得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度數(shù),結(jié)合∠1可得結(jié)果;[探究]過(guò)點(diǎn)P作PM∥AB,根據(jù)AB∥CD,PM∥CD,進(jìn)而根據(jù)平行線的性質(zhì)即可求∠EPF的度數(shù);[應(yīng)用](1)如圖③所示,在[探究]的條件下,根據(jù)∠PEA的平分線和∠PFC的平分線交于點(diǎn)G,可得∠G的度數(shù);(2)畫(huà)出圖形,分點(diǎn)A在點(diǎn)B左側(cè)和點(diǎn)A在點(diǎn)B右側(cè),兩種情況,分別求解.【詳解】解:[感知]如圖①,過(guò)點(diǎn)P作PM∥AB,∴∠1=∠AEP=40°(兩直線平行,內(nèi)錯(cuò)角相等)∵AB∥CD,∴PM∥CD(平行于同一條直線的兩直線平行),∴∠2+∠PFD=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),∴∠PFD=130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF=90°;[探究]如圖②,過(guò)點(diǎn)P作PM∥AB,∴∠MPE=∠AEP=50°,∵AB∥CD,∴PM∥CD,∴∠PFC=∠MPF=120°,∴∠EPF=∠MPF-∠MPE=120°-50°=70°;[應(yīng)用](1)如圖③所示,∵EG是∠PEA的平分線,F(xiàn)G是∠PFC的平分線,∴∠AEG=∠AEP=25°,∠GFC=∠PFC=60°,過(guò)點(diǎn)G作GM∥AB,∴∠MGE=∠AEG=25°(兩直線平行,內(nèi)錯(cuò)角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一條直線的兩直線平行),∴∠GFC=∠MGF=60°(兩直線平行,內(nèi)錯(cuò)角相等).∴∠G=∠MGF-∠MGE=60°-25°=35°.故答案為:35.(2)當(dāng)點(diǎn)A在點(diǎn)B左側(cè)時(shí),如圖,故點(diǎn)E作EF∥AB,則EF∥CD,∴∠ABE=∠BEF,∠CDE=∠DEF,∵平分平分,,∴∠ABE=∠BEF=,∠CDE=∠DEF=,∴∠BED=∠BEF+∠DEF=;當(dāng)點(diǎn)A在點(diǎn)B右側(cè)時(shí),如圖,故點(diǎn)E作EF∥AB,則EF∥CD,∴∠DEF=∠CDE,∠ABG=∠BEF,∵平分平分,,∴∠DEF=∠CDE=,∠ABG=∠BEF=,∴∠BED=∠DEF-∠BEF=;綜上:∠BED的度數(shù)為或.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì)、平行公理及推論,角平分線的定義,解決本題的關(guān)鍵是熟練運(yùn)用平行線的性質(zhì).12.(1)平行,理由見(jiàn)解析;(2)65°;(3)5秒或95秒【分析】(1)根據(jù)等角的補(bǔ)角相等求出∠3與∠4的補(bǔ)角相等,再根據(jù)內(nèi)錯(cuò)角相等,兩直線平行即可判定a∥b;(2)根據(jù)入射光線與鏡面的夾角與反解析:(1)平行,理由見(jiàn)解析;(2)65°;(3)5秒或95秒【分析】(1)根據(jù)等角的補(bǔ)角相等求出∠3與∠4的補(bǔ)角相等,再根據(jù)內(nèi)錯(cuò)角相等,兩直線平行即可判定a∥b;(2)根據(jù)入射光線與鏡面的夾角與反射光線與鏡面的夾角相等可得∠1=∠2,然后根據(jù)平角等于180°求出∠1的度數(shù),再加上40°即可得解;(3)分①AB與CD在EF的兩側(cè),分別表示出∠ACD與∠BAC,然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等列式計(jì)算即可得解;②CD旋轉(zhuǎn)到與AB都在EF的右側(cè),分別表示出∠DCF與∠BAC,然后根據(jù)兩直線平行,同位角相等列式計(jì)算即可得解;③CD旋轉(zhuǎn)到與AB都在EF的左側(cè),分別表示出∠DCF與∠BAC,然后根據(jù)兩直線平行,同位角相等列式計(jì)算即可得解.【詳解】解:(1)平行.理由如下:如圖1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(內(nèi)錯(cuò)角相等,兩直線平行);(2)如圖2:∵入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,∴∠1=∠2,∵入射光線a與水平線OC的夾角為40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=×50°=25°,∴MN與水平線的夾角為:25°+40°=65°,即MN與水平線的夾角為65°,可使反射光線b正好垂直照射到井底;(3)存在.如圖①,AB與CD在EF的兩側(cè)時(shí),∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,則∠ACD=∠BAC,即115-3t=105-t,解得t=5;如圖②,CD旋轉(zhuǎn)到與AB都在EF的右側(cè)時(shí),∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,則∠DCF=∠BAC,即295-3t=105-t,解得t=95;如圖③,CD旋轉(zhuǎn)到與AB都在EF的左側(cè)時(shí),∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,則∠DCF=∠BAC,即3t-295=t-105,解得t=95,此時(shí)t>105,∴此情況不存在.綜上所述,t為5秒或95秒時(shí),CD與AB平行.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),光學(xué)原理,讀懂題意并熟練掌握平行線的判定方法與性質(zhì)是解題的關(guān)鍵,(3)要注意分情況討論.13.(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析;.【分析】(1)過(guò)點(diǎn)C作,得到,再根據(jù),,得到,進(jìn)而得到,最后證明;(2)先證明,再證明,得到,問(wèn)題得證;(3)根據(jù)題意得到,根據(jù)(2)結(jié)論得到∠D解析:(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析;.【分析】(1)過(guò)點(diǎn)C作,得到,再根據(jù),,得到,進(jìn)而得到,最后證明;(2)先證明,再證明,得到,問(wèn)題得證;(3)根據(jù)題意得到,根據(jù)(2)結(jié)論得到∠DEF=∠ECA=,進(jìn)而得到,根據(jù)三角形內(nèi)角和即可求解.【詳解】解:(1)過(guò)點(diǎn)C作,,,,,,,,,;(2)解:,,又,,,,,,;(3)如圖三角形DEF即為所求作三角形.∵,∴,由(2)得,DE∥AC,∴∠DEF=∠ECA=,∵,∴∠ACB=,∴,∴∠A=180°-=.故答案為為:.【點(diǎn)睛】本題考查了平行線的判定,三角形的內(nèi)角和等知識(shí),綜合性較強(qiáng),熟練掌握相關(guān)知識(shí),根據(jù)題意畫(huà)出圖形是解題關(guān)鍵.14.(1),見(jiàn)解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質(zhì)得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,解析:(1),見(jiàn)解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質(zhì)得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,由(1)的結(jié)論得∠AFD=∠BAF+∠CDF,根據(jù)角平分線的定義得到∠BAF=∠BAE,∠CDF=∠CDE,則∠AFD=(∠BAE+∠CDE),加上(1)的結(jié)論得到∠AFD=∠AED;(3)由(1)的結(jié)論得∠AGD=∠BAF+∠CDG,利用折疊性質(zhì)得∠CDG=4∠CDF,再利用等量代換得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,從而可計(jì)算出∠BAE的度數(shù).【詳解】解:(1)理由如下:作,如圖1,,.,,;(2)如圖2,由(1)的結(jié)論得,、的兩條平分線交于點(diǎn)F,,,,,;(3)由(1)的結(jié)論得,而射線沿翻折交于點(diǎn)G,,,,,.【點(diǎn)睛】本題考查了平行線性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.15.(1)證明見(jiàn)解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由見(jiàn)解析.【分析】(1)首先根據(jù)平行線的性質(zhì)得出∠ACE=∠A,∠ECD=∠B,然后通過(guò)等量代換即可得出答案;(2)首先根據(jù)角解析:(1)證明見(jiàn)解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由見(jiàn)解析.【分析】(1)首先根據(jù)平行線的性質(zhì)得出∠ACE=∠A,∠ECD=∠B,然后通過(guò)等量代換即可得出答案;(2)首先根據(jù)角平分線的定義得出∠FCD=∠ECD,∠HAF=∠HAD,進(jìn)而得出∠F=(∠HAD+∠ECD),然后根據(jù)平行線的性質(zhì)得出∠HAD+∠ECD的度數(shù),進(jìn)而可得出答案;(3)根據(jù)平行線的性質(zhì)及角平分線的定義得出,,,再通過(guò)等量代換即可得出∠MQN=∠ACB.【詳解】解:(1)∵CEAB,∴∠ACE=∠A,∠ECD=∠B,∵∠ACD=∠ACE+∠ECD,∴∠ACD=∠A+∠B;(2)∵CF平分∠ECD,F(xiàn)A平分∠HAD,∴∠FCD=∠ECD,∠HAF=∠HAD,∴∠F=∠HAD+∠ECD=(∠HAD+∠ECD),∵CHAB,∴∠ECD=∠B,∵AHBC,∴∠B+∠HAB=180°,∵∠BAD=70°,,∴∠F=(∠B+∠HAD)=55°;(3)∠MQN=∠ACB,理由如下:平分,.平分,.,.∴∠MQN=∠MQG﹣∠NQG=180°﹣∠QGR﹣∠NQG=180°﹣(∠AQG+∠QGD)=180°﹣(180°﹣∠CQG+180°﹣∠QGC)=(∠CQG+∠QGC)=∠ACB.【點(diǎn)睛】本題主要考查平行線的性質(zhì)和角平分線的定義,掌握平行線的性質(zhì)和角平分線的定義是解題的關(guān)鍵.四、解答題16.【現(xiàn)象解釋】見(jiàn)解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現(xiàn)象解釋]根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【現(xiàn)象解釋】見(jiàn)解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現(xiàn)象解釋]根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可證得AB∥CD;[嘗試探究]根據(jù)三角形內(nèi)角和定理求得∠2+∠3=125°,根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用平角的定義得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根據(jù)三角形內(nèi)角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定義得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性質(zhì)∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可證得β=2α.【詳解】[現(xiàn)象解釋]如圖2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【嘗試探究】如圖3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如圖4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【點(diǎn)睛】本題考查了平行線的判定,三角形外角的性質(zhì)以及三角形內(nèi)角和定理,熟練掌握三角形的性質(zhì)是解題的關(guān)鍵.17.(1)3;(2)98°;(3)∠P=(β+2α),理由見(jiàn)解析;(4)360°.【分析】(1)以M為交點(diǎn)的“8字形”有1個(gè),以O(shè)為交點(diǎn)的“8字形”有2個(gè);(2)根據(jù)角平分線的定義得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由見(jiàn)解析;(4)360°.【分析】(1)以M為交點(diǎn)的“8字形”有1個(gè),以O(shè)為交點(diǎn)的“8字形”有2個(gè);(2)根據(jù)角平分線的定義得到∠CAP=∠BAP,∠BDP=∠CDP,再根據(jù)三角形內(nèi)角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,兩等式相減得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入計(jì)算即可;(3)與(2)的證明方法一樣得到∠P=(2∠C+∠B).(4)根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠B+∠A=∠1,∠C+∠D=∠2,再根據(jù)四邊形內(nèi)角和為360°可得答案.【詳解】解:(1)在圖2中有3個(gè)以線段AC為邊的“8字形”,故答案為3;(2)∵∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案為360°.18.(1)見(jiàn)解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角解析:(1)見(jiàn)解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角形”的定義,分類討論:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形內(nèi)角和定理和外角的性質(zhì)結(jié)合“準(zhǔn)互余三角形”的定義,即可求出答案.【詳解】(1)證明:∵在中,,∴,∵BD是的角平分線,∴,∴,∴是“準(zhǔn)互余三角形”;(2)①∵,∴,∴是“準(zhǔn)互余三角形”,故①正確;②∵,,∴,∴不是“準(zhǔn)互余三角形”,故②錯(cuò)誤;③設(shè)三角形的三個(gè)內(nèi)角分別為,且,∵三角形是“準(zhǔn)互余三角形”,∴或,∴,∴,∴“準(zhǔn)互余三角形”一定是鈍角三角形,故③正確;綜上所述,①③正確,故答案為:①③;(3)∠APB的度數(shù)是10°或20°或40°或110°;如圖①,當(dāng)2∠A+∠ABC=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如圖②,當(dāng)∠A+2∠APB=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如圖③,當(dāng)2∠APB+∠ABC=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠APB=20°;如圖④,當(dāng)2∠A+∠APB=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;綜上,∠APB的度數(shù)是10°或20°或40°或110°時(shí),是“準(zhǔn)互余三角形”.【點(diǎn)睛】本題是三角形綜合題,考查了三角形內(nèi)角和定理,三角形的外角的性質(zhì),解題關(guān)鍵是理解題意,根據(jù)三角形內(nèi)角和定理和三角形的外角的性質(zhì),結(jié)合新定義進(jìn)行求解.19.(1)①70;②∠F=∠BED,證明見(jiàn)解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①過(guò)F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F=∠BE
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 縱橫軟件課程設(shè)計(jì)總結(jié)
- 打印報(bào)表課程設(shè)計(jì)
- 吉林省四平市第三高級(jí)中學(xué)2024-2025學(xué)年高一上學(xué)期第二次質(zhì)量檢測(cè)歷史試題
- 甜品糖水教學(xué)課程設(shè)計(jì)
- 茶藝插畫(huà)課程設(shè)計(jì)案例
- 物理有沒(méi)有進(jìn)展課程設(shè)計(jì)
- 2024年演員聘用合同
- 電子商務(wù)行業(yè)客服工作回顧
- 外科部門(mén)手術(shù)治療工作年度總結(jié)
- 2024年社區(qū)工作者測(cè)試題庫(kù)
- 公交車(chē)站臺(tái)服務(wù)規(guī)范與安全意識(shí)
- 2024電商消費(fèi)趨勢(shì)年度報(bào)告-flywheel飛未-202412
- 慢阻肺護(hù)理個(gè)案病例范文
- 《農(nóng)機(jī)安全》課件
- 公共廁所清潔保養(yǎng)協(xié)議
- 浙江省溫州市2023-2024學(xué)年六年級(jí)上學(xué)期期末科學(xué)試卷(含答案)3
- 深圳大學(xué)《激光原理與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 西安市高新第一中學(xué)八年級(jí)上冊(cè)地理期末試卷(含答案)
- 2024年廣東省深圳市中考英語(yǔ)適應(yīng)性試卷
- 普法學(xué)法知識(shí)考試題庫(kù)(100題附答案)
- 中國(guó)普通食物營(yíng)養(yǎng)成分表(修正版)
評(píng)論
0/150
提交評(píng)論