版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
江西省贛中南五校聯(lián)考2025屆高二上數(shù)學(xué)期末預(yù)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)實系數(shù)一元二次方程在復(fù)數(shù)集C內(nèi)的根為、,則由,可得.類比上述方法:設(shè)實系數(shù)一元三次方程在復(fù)數(shù)集C內(nèi)的根為,則的值為A.﹣2 B.0C.2 D.42.已知命題是真命題,那么的取值范圍是()A. B.C. D.3.金剛石的成分為純碳,是自然界中存在的最堅硬物質(zhì),它的結(jié)構(gòu)是由8個等邊三角形組成的正八面體.若某金剛石的棱長為2,則它外接球的體積為()A. B.C. D.4.已知雙曲線的離心率為5,則其標(biāo)準(zhǔn)方程為()A. B.C. D.5.以,為焦點,且經(jīng)過點的橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.6.甲乙兩名運動員在某項體能測試中的6次成績統(tǒng)計如表:甲9816151514乙7813151722分別表示甲乙兩名運動員這項測試成績的平均數(shù),分別表示甲乙兩名運動員這項測試成績的標(biāo)準(zhǔn)差,則有()A., B.,C., D.,7.雙曲線的兩個焦點坐標(biāo)是()A.和 B.和C.和 D.和8.將直線2x-y+λ=0沿x軸向左平移1個單位,所得直線與圓x2+y2+2x-4y=0相切,則實數(shù)λ值為()A.-3或7 B.-2或8C0或10 D.1或119.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的可能為()A.9 B.5C.4 D.310.已知,,若,則()A.6 B.11C.12 D.2211.已知函數(shù)及其導(dǎo)函數(shù),若存在使得,則稱是的一個“巧值點”.下列選項中沒有“巧值點”的函數(shù)是()A. B.C. D.12.已知正數(shù)x,y滿足,則取得最小值時()A. B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.若命題“,不等式恒成立”為真命題,則實數(shù)a的取值范圍是________.14.已知一組數(shù)據(jù)的平均數(shù)為4,方差為3,若另一組數(shù)據(jù)的平均數(shù)為10,則該組數(shù)據(jù)的方差為_______.15.如圖,在棱長都為的平行六面體中,,,兩兩夾角均為,則________;請選擇該平行六面體的三個頂點,使得經(jīng)過這三個頂點的平面與直線垂直.這三個頂點可以是________16.已知橢圓的左、右焦點分別為F1,F(xiàn)2,P為橢圓上一點,且(O為坐標(biāo)原點).若,則橢圓的離心率為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在空間四邊形中,,分別為,的中點,,分別在,上,且.求證:(1)、、、四點共面;(2)與的交點在直線上18.(12分)已知等差數(shù)列滿足:,.(1)求數(shù)列的通項公式;(2)若數(shù)列滿足:,,求數(shù)列的通項公式.19.(12分)已知拋物線的焦點為F,點是拋物線上的點,且.(1)求拋物線方程;(2)直線與拋物線交于、兩點,且.求△OPQ面積的最小值.20.(12分)已知橢圓的右頂點為,上頂點為.離心率為,.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若,是橢圓上異于長軸端點的兩點(斜率不為0),已知直線,且,垂足為,垂足為,若,且的面積是面積的5倍,求面積的最大值.21.(12分)已知圓C經(jīng)過點,,且圓心C在直線上(1)求圓C的標(biāo)準(zhǔn)方程;(2)過點向圓C引兩條切線PD,PE,切點分別為D,E,求切線PD,PE的方程,并求弦DE的長22.(10分)已知各項均為正數(shù)的等差數(shù)列中,,且,,構(gòu)成等比數(shù)列的前三項(1)求數(shù)列,的通項公式;(2)求數(shù)列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】用類比推理得到,再用待定系數(shù)法得到,,再根據(jù)求解.【詳解】,由對應(yīng)系數(shù)相等得:,.故選:A.【點睛】本題主要考查合情推理以及待定系數(shù)法,還考查了轉(zhuǎn)化化歸的思想和邏輯推理的能力,屬于中檔題.2、C【解析】依據(jù)題意列出關(guān)于的不等式,即可求得的取值范圍.【詳解】當(dāng)時,僅當(dāng)時成立,不符合題意;當(dāng)時,若成立,則,解之得綜上,取值范圍是故選:C3、A【解析】求得外接球的半徑,進而計算出外接球體積.【詳解】設(shè),正八面體的棱長為,根據(jù)正八面體的性質(zhì)可知:,所以是外接球的球心,且半徑,所以外接球的體積為.故選:A4、D【解析】雙曲線離心率公式和a、b、c的關(guān)系即可求得m,從而得到雙曲線的標(biāo)準(zhǔn)方程.【詳解】∵雙曲線,∴,又,∴,∵離心率為,∴,解得,∴雙曲線方程.故選:D.5、B【解析】根據(jù)焦點在x軸上,c=1,且過點,用排除法可得.也可待定系數(shù)法求解,或根據(jù)橢圓定義求2a可得.【詳解】因為焦點在x軸上,所以C不正確;又因為c=1,故排除D;將代入得,故A錯誤,所以選B.故選:B6、B【解析】根據(jù)給定統(tǒng)計表計算、,再比較、大小判斷作答.【詳解】依題意,,,,,所以,.故選:B7、C【解析】由雙曲線標(biāo)準(zhǔn)方程可得到焦點所在軸及半焦距的長,進而得到兩個焦點坐標(biāo).【詳解】雙曲線中,,則又雙曲線焦點在y軸,故雙曲線的兩個焦點坐標(biāo)是和故選:C8、A【解析】根據(jù)直線平移的規(guī)律,由直線2x﹣y+λ=0沿x軸向左平移1個單位得到平移后直線的方程,然后因為此直線與圓相切得到圓心到直線的距離等于半徑,利用點到直線的距離公式列出關(guān)于λ的方程,求出方程的解即可得到λ的值解:把圓的方程化為標(biāo)準(zhǔn)式方程得(x+1)2+(y﹣2)2=5,圓心坐標(biāo)為(﹣1,2),半徑為,直線2x﹣y+λ=0沿x軸向左平移1個單位后所得的直線方程為2(x+1)﹣y+λ=0,因為該直線與圓相切,則圓心(﹣1,2)到直線的距離d==r=,化簡得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故選A考點:直線與圓的位置關(guān)系9、D【解析】根據(jù)輸出結(jié)果可得輸出時,結(jié)合執(zhí)行邏輯確定輸入k的可能值,即可知答案.【詳解】由,得,則輸人的可能為.∴結(jié)合選項知:D符合要求.故選:D.10、C【解析】根據(jù)遞推關(guān)系式計算即可求出結(jié)果.【詳解】因為,,,則,,,故選:C.11、C【解析】利用新定義:存在使得,則稱是的一個“巧點”,對四個選項中的函數(shù)進行一一的判斷即可【詳解】對于A,,則,令,解得或,即有解,故選項A的函數(shù)有“巧值點”,不符合題意;對于B,,則,令,令,則g(x)在x>0時為增函數(shù),∵(1),(e),由零點的存在性定理可得,在上存在唯一零點,即方程有解,故選項B的函數(shù)有“巧值點”,不符合題意;對于C,,則,令,故方程無解,故選項C的函數(shù)沒有“巧值點”,符合題意;對于D,,則,令,則.∴方程有解,故選項D的函數(shù)有“巧值點”,不符合題意故選:C12、B【解析】根據(jù)基本不等式進行求解即可.【詳解】因為正數(shù)x,y,所以,當(dāng)且僅當(dāng)時取等號,即時,取等號,而,所以解得,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,不等式恒成立,只要即可,利用基本不等式求出即可得出答案.【詳解】解:因為,不等式恒成立,只要即可,因為,所以,則,當(dāng)且僅當(dāng),即時取等號,所以,所以.故答案為:.14、12【解析】根據(jù)題意,先通過原始數(shù)據(jù)的平均數(shù)、方差及新數(shù)據(jù)的平均數(shù)求出k,進而求出新數(shù)據(jù)的方差.【詳解】由題意,原式數(shù)據(jù)的平均數(shù)和方程分別為:,則新數(shù)據(jù)的平均數(shù),于是新數(shù)據(jù)的方差.故答案為:12.15、①.②.點或點(填出其中一組即可)【解析】(1)以向量,,為基底分別表達(dá)出向量和,展開即可解決;(2)由上一問可知,用上一問同樣的方法可以證明出,這樣就證明了平面與直線垂直.【詳解】(1)令,,,則,則有,故(2)令,,,則,則有,故故,即又由(1)之,,故直線垂直于平面同理可證直線垂直于平面故答案為:0;點或點16、##【解析】由向量的數(shù)量積得,從而得,利用勾股定理和橢圓的定義可得的等式,從而求得離心率【詳解】,所以,又,所以是直角三角形,,,又,,所以,,,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析【解析】(1)由平行關(guān)系轉(zhuǎn)化,可得,即可證明四點共面;(2)由條件證明與的交點既在平面上,又在平面上,即可證明.【詳解】證明(1)∵,∴∵,分別為,的中點,∴,∴,∴,,,四點共面(2)∵,不是,的中點,∴,且,故為梯形∴與必相交,設(shè)交點為,∴平面,平面,∴平面,且平面,∴,即與的交點在直線上18、(1);(2).【解析】(1)由題設(shè)條件,結(jié)合等差數(shù)列通項公式求基本量d,進而寫出通項公式.(2)由(1)得,應(yīng)用累加法、錯位相減法及等比數(shù)列前n項和公式求的通項公式.【小問1詳解】令公差為d,由得:,解得.所以.【小問2詳解】,則,累加整理,得:,①,②②-①得:,又滿足上式,故.19、(1);(2).【解析】(1)根據(jù)拋物線的定義列方程,由此求得,進而求得拋物線方程.(2)聯(lián)立直線的方程和拋物線方程,寫出根與系數(shù)關(guān)系,結(jié)合求得的值,求得三角形面積的表達(dá)式,進而求得面積的最小值.【詳解】(1)依題意.(2)與聯(lián)立得,,得,又,又m>0,m=4.且,,當(dāng)k=0時,S最小,最小值為.20、(1)(2)面積的最大值為【解析】(1)由離心率為,,得,解得,,,進而可得答案(2)設(shè)直線的方程為,,,,,聯(lián)立直線與橢圓的方程,結(jié)合韋達(dá)定理可得,,由弦長公式可得,點到直線的距離,則,,由的面積是面積的5倍,解得,再計算的最大值,即可【小問1詳解】解:因為離心率為,,所以,解得,,,所以【小問2詳解】解:設(shè)直線的方程為,,,,,聯(lián)立,得,所以,,所以,點到直線的距離,所以,,因為的面積是面積的5倍,所以所以或,又因為,是橢圓上異于長軸端點的兩點,所以,所以,令,所以,因為在上單調(diào)遞增,所以,(當(dāng)時,取等號),所以面積的最大值為.21、(1)(2)或,【解析】(1)設(shè)圓心,根據(jù)圓心在直線上及圓過兩點建立方程求解即可;(2)分切線的斜率存在與不存在分類討論,利用圓心到切線的距離等于半徑求解,再根據(jù)圓的切線的幾何性質(zhì)求弦長即可.【小問1詳解】設(shè)圓心,因為圓心C在直線上,所以①因為A,B是圓上的兩點,所以,所以,即②聯(lián)立①②,解得,所以圓C的半徑,所以圓C的標(biāo)準(zhǔn)方程為【小問2詳解】若過點P的切線斜率不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年秋季小學(xué)數(shù)學(xué)北京課改版一年級【數(shù)學(xué)(北京版)】8、7、6加幾-4練習(xí)題
- 支教小學(xué)心理課程設(shè)計
- 智能殺毒軟件課程設(shè)計
- 小學(xué)烈士陵園課程設(shè)計
- 智能門鎖編程課程設(shè)計
- 可持續(xù)發(fā)展與綠色消費的崛起
- 跨文化交流中的禮儀與習(xí)俗
- 中德財務(wù)管理課程設(shè)計
- 地質(zhì)災(zāi)害防治的勘察設(shè)計方法與安全保障
- 后端程序設(shè)計課程設(shè)計
- 20以內(nèi)加減法口算練習(xí)題(直接可打印)
- 代賣合同 買賣合同范本
- 期末考試-公共財政概論-章節(jié)習(xí)題
- 職業(yè)高中高一上學(xué)期期末數(shù)學(xué)試題卷(含答案)
- (打印)初一英語語法練習(xí)題(一)
- (正式版)JBT 3300-2024 平衡重式叉車 整機試驗方法
- 廣東省汕頭市金平區(qū)2023-2024學(xué)年七年級上學(xué)期期末語文試題
- 生態(tài)系統(tǒng)的信息傳遞說課稿-2023-2024學(xué)年高二上學(xué)期生物人教版選擇性必修二
- 2024年天津津誠國有資本投資運營有限公司招聘筆試參考題庫含答案解析
- 2024年廣東珠海水務(wù)環(huán)境控股集團有限公司招聘筆試參考題庫含答案解析
- 2024版國開電大??啤禘CEL在財務(wù)中的應(yīng)用》在線形考(形考作業(yè)一至四)試題及答案
評論
0/150
提交評論