版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省銅陵市2025屆數(shù)學高二上期末教學質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在直三棱柱中,側(cè)面是邊長為的正方形,,,且,則異面直線與所成的角為()A. B.C. D.2.已知雙曲線左右焦點為,,過的直線與雙曲線的右支交于P,Q兩點,且,若為以Q為頂角的等腰三角形,則雙曲線的離心率為()A. B.C. D.3.雙曲線的離心率為,焦點到漸近線的距離為,則雙曲線的焦距等于A. B.C. D.4.①“若,則互為相反數(shù)”的逆命題;②“若,則”的逆否命題;③“若,則”的否命題.其中真命題的個數(shù)為()A.0 B.1C.2 D.35.設(shè)拋物線的焦點為F,過點F且垂直于x軸的直線與拋物線C交于A,B兩點,若,則()A1 B.2C.4 D.86.若函數(shù)在區(qū)間內(nèi)存在單調(diào)遞增區(qū)間,則實數(shù)的取值范圍是()A. B.C. D.7.已知,是雙曲線的左、右焦點,點A是的左頂點,為坐標原點,以為直徑的圓交的一條漸近線于、兩點,以為直徑的圓與軸交于兩點,且平分,則雙曲線的離心率為()A. B.2C. D.38.已知橢圓的右焦點和右頂點分別為F,A,離心率為,且,則n的值為()A.4 B.3C.2 D.9.過點且斜率為的直線方程為()A. B.C D.10.已知拋物線=的焦點為F,M、N是拋物線上兩個不同的點,若,則線段MN的中點到y(tǒng)軸的距離為()A.8 B.4C. D.911.已知全集,集合,,則()A. B.C. D.12.設(shè)點P是函數(shù)圖象上任意一點,點Q的坐標,當取得最小值時圓C:上恰有2個點到直線的距離為1,則實數(shù)r的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若平面法向量,直線的方向向量為,則與所成角的大小為___________.14.如圖,在平行六面體中,設(shè),N是的中點,則向量_________.(用表示)15.已知拋物線C:y2=8x的焦點為F,直線l過點F與拋物線C交于A,B兩點,以F為圓心的圓交線段AB于C,D兩點(從上到下依次為A,C,D,B),若,則該圓的半徑r的取值范圍是____________.16.中小學生的視力狀況受到社會的關(guān)注.某市有關(guān)部門從全市6萬名高一學生中隨機抽取400名學生,對他們的視力狀況進行一次調(diào)查統(tǒng)計,將所得到的有關(guān)數(shù)據(jù)繪制成頻率分布直方圖,如圖所示,從左至右五個小組的頻率之比為,則抽取的這400名高一學生中視力在范圍內(nèi)的學生有______人.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,是函數(shù)的兩個極值點.(1)求的解析式;(2)記,,若函數(shù)有三個零點,求的取值范圍.18.(12分)已知橢圓的離心率為,點是橢圓E上一點.(1)求E的方程;(2)設(shè)過點的動直線與橢圓E相交于兩點,O為坐標原點,求面積的取值范圍.19.(12分)等差數(shù)列前n項和為,且(1)求通項公式;(2)記,求數(shù)列的前n項和20.(12分)已知等差數(shù)列的前項和為,,.(1)求的通項公式;(2)設(shè)數(shù)列的前項和為,用符號表示不超過x的最大數(shù),當時,求的值.21.(12分)已知橢圓,四點中,恰有三點在橢圓上(1)求橢圓的方程;(2)設(shè)直線不經(jīng)過點,且與橢圓相交于不同的兩點.若直線與直線的斜率之和為,證明:直線過一定點,并求此定點坐標22.(10分)已知圓(1)若直線與圓C相交于A、B兩點,當弦長最短時,求直線l的方程;(2)若與圓C相外切且與y軸相切的圓的圓心記為D,求D點的軌跡方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分析得出,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得異面直線與所成的角.【詳解】由題意可知,,因為,,則,,因為平面,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則點、、、,,,,因此,異面直線與所成的角為.故選:C.2、C【解析】由雙曲線的定義得出中各線段長(用表示),然后通過余弦定理得出的關(guān)系式,變形后可得離心率【詳解】由題意,又,所以,從而,,,中,,中.,所以,,所以,故選:C3、D【解析】不妨設(shè)雙曲線方程為,則,即設(shè)焦點為,漸近線方程為則又解得.則焦距為.選:D4、B【解析】寫出逆命題判斷①;寫出逆否命題判斷②;寫出否命題判斷③.【詳解】①:“若,則互為相反數(shù)”的逆命題為:“若互為相反數(shù),則”,是真命題;②:“若,則”的逆否命題為:“若,則”.因為當時,有,但不成立.故“若,則”是假命題.③:“若,則”的否命題為:“若,則”.因為當時,有,但是,即不成立.故“若,則”是假命題..故選:B5、C【解析】根據(jù)焦點弦的性質(zhì)即可求出【詳解】依題可知,,所以故選:C6、D【解析】求出函數(shù)的導數(shù),問題轉(zhuǎn)化為在有解,進而求函數(shù)的最值,即可求出的范圍.【詳解】∵,∴,若在區(qū)間內(nèi)存在單調(diào)遞增區(qū)間,則有解,故,令,則在單調(diào)遞增,,故.故選:D.7、B【解析】由直徑所對圓周角是直角,結(jié)合雙曲線的幾何性質(zhì)和角平分線定義可解.【詳解】由圓的性質(zhì)可知,,,所以,因為,所以又因為平分,所以,由,得,所以,即所以故選:B8、B【解析】根據(jù)橢圓方程及其性質(zhì)有,求解即可.【詳解】由題設(shè),,整理得,可得.故選:B9、B【解析】利用點斜式可得出所求直線的方程.【詳解】由題意可知所求直線的方程為,即.故選:B.10、B【解析】過分別作垂直于準線,垂足為,則由拋物線的定義可得,再過MN的中點作垂直于準線,垂足為,然后利用梯形的中位線定理可求得結(jié)果【詳解】拋物線=的焦點,準線方程為直線如圖,過分別作垂直于準線,垂足為,過MN的中點作垂直于準線,垂足為,則由拋物線的定義可得,因為,所以,因為是梯形的中位線,所以,所以線段MN的中點到y(tǒng)軸的距離為4,故選:B11、A【解析】先求,然后求.【詳解】,,.故選:A12、C【解析】先求出代表的是以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),數(shù)形結(jié)合得到取得最小值時a的值,得到圓心C,利用點到直線距離求出圓心C到直線的距離,數(shù)形結(jié)合求出半徑r的取值范圍.【詳解】,兩邊平方得:,即點P在以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),如圖所示:因為Q的坐標為,則在直線,過點A作⊥l于點,與半圓交于點,此時長為的最小值,則,所以直線:,與聯(lián)立得:,所以,解得:,則圓C:,則,圓心到直線的距離為,要想圓C上恰有2個點到直線的距離為1,則.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】設(shè)直線與平面所成角為,則,直接利用直線與平面所成的角的向量計算公式,即可求出直線與平面所成的角【詳解】解:已知直線的方向向量為,平面的法向量為,設(shè)直線與平面所成角為,則,,,所以直線與平面所成角為.故答案為:.14、【解析】根據(jù)向量的加減法運算法則及數(shù)乘運算求解即可.【詳解】由向量的減法及加法運算可得,,故答案為:15、【解析】設(shè)出直線的方程為,代入拋物線方程,消去,可得關(guān)于的二次方程,運用韋達定理及拋物線的定義,化簡計算可求解.【詳解】拋物線C:y2=8x的焦點為,設(shè)以為圓心的圓的半徑為,可知,,設(shè),直線的方程為,則,代入拋物線方程,可得,即有,,,,即,所以.故答案為:16、50【解析】利用頻率分布直方圖的性質(zhì)求解即可.【詳解】第五組的頻率為,第一組所占的頻率為,則隨機抽取400名學生視力在范圍內(nèi)的學生約有人.故答案為:50.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)極值點的定義,可知方程的兩個解即為,,代入即得結(jié)果;(2)根據(jù)題意,將方程轉(zhuǎn)化為,則函數(shù)與直線在區(qū)間,上有三個交點,進而求解的取值范圍【詳解】解:(1)因為,所以根據(jù)極值點定義,方程的兩個根即為,,,代入,,可得,解之可得,,故有;(2)根據(jù)題意,,,,根據(jù)題意,可得方程在區(qū)間,內(nèi)有三個實數(shù)根,即函數(shù)與直線在區(qū)間,內(nèi)有三個交點,又因為,則令,解得;令,解得或,所以函數(shù)在,上單調(diào)遞減,在上單調(diào)遞增;又因為,,,,函數(shù)圖象如下所示:若使函數(shù)與直線有三個交點,則需使,即18、(1);(2).【解析】(1)列出關(guān)于a、b、c的方程組即可求解;(2)根據(jù)題意,直線l斜率存在,設(shè)其方程為,代入橢圓方程消去y得到關(guān)于x的二次方程,根據(jù)韋達定理得到根與系數(shù)的關(guān)系,求出PQ長度,求出原點到l的距離,根據(jù)三角形面積公式表示出△OPQ的面積,利用基本不等式求解其范圍即可.【小問1詳解】由題設(shè)知,解得.∴橢圓E的方程為;【小問2詳解】當軸時不合題意,故可設(shè),則,得.由題意知,即,得.從而.又點O到直線的距離,∴,令,則,,,所求面積的取值范圍為.19、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件求,利用等差數(shù)列的通項公式可求得數(shù)列的通項公式.(2)求得,利用裂項相消法即可求得.【小問1詳解】設(shè)等差數(shù)列的公差為,由,解得,所以,故數(shù)列的通項公式;【小問2詳解】由(1)得:,所以,所以.20、(1)(2)9【解析】(1)首先根據(jù)已知條件分別求出的首項和公差,然后利用等差數(shù)列的通項公式求解即可;(2)首先利用等差數(shù)列求和公式求出,然后利用裂項相消法和分組求和法求出,進而可求出的通項公式,最后利用等差數(shù)列求和公式求解即可.【小問1詳解】不妨設(shè)等差數(shù)列的公差為,故,,解得,,從而,即的通項公式為.【小問2詳解】由題意可知,,所以,故,因為當時,;當時,,所以,由可知,,即,解得,即值為9.21、(1)(2)證明見解析,定點【解析】(1)先判斷出在橢圓上,再代入求橢圓方程;(2)假設(shè)斜率存在,設(shè)出直線,利用斜率之和為,求出之間的關(guān)系,即可求出定點,再說明斜率不存在時,直線仍過該點即可.【小問1詳解】由對稱性同時在橢圓上或同時不在橢圓上,從而在橢圓上,因此不在橢圓上,故在橢圓上,將,代入橢圓的方程,解得,所以橢圓的方程為【小問2詳解】當直線斜率存在時,令方程為,由得所以得方程為,過定點當直線斜率不存在時,令方程為,由,即解得此時直線方程為,也過點綜上,直線過定點.【點睛】本題關(guān)鍵點在于先假設(shè)斜率存在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國立式暗裝風機盤管行業(yè)投資前景及策略咨詢研究報告
- 二零二五年度建筑結(jié)構(gòu)設(shè)計服務(wù)合同2篇
- 二零二五年度建筑工程施工安全協(xié)議范本1500字3篇
- 2024年足球場地租賃協(xié)議詳細條款版B版
- 二零二五年度5人合伙國際貿(mào)易合作協(xié)議3篇
- 游戲開發(fā)行業(yè)產(chǎn)品功能免責合同
- 教育課程錄制協(xié)議
- 養(yǎng)老服務(wù)機構(gòu)委托管理協(xié)議
- 二零二五年度家庭養(yǎng)老護理員護理技能培訓與雇傭合同3篇
- 二零二五年度家具拆除與搬遷服務(wù)合同樣本3篇
- CF5061GXJYNKR管線加油車使用說明書-
- (51)-春季助長小兒推拿探秘
- 反恐認證全套文件表格優(yōu)質(zhì)資料
- 住院醫(yī)師規(guī)范化培訓臨床實踐能力結(jié)業(yè)考核基本技能操作評分表(氣管插管術(shù))
- 2023年成都溫江興蓉西城市運營集團有限公司招聘筆試模擬試題及答案解析
- 學生傷害事故處理辦法及案例課件
- 工藝豎井開挖支護施工技術(shù)方案(清楚明了)
- 初中《合唱》校本課程
- 一元一次含參不等式教學設(shè)計83
- 100道湊十法練習習題(含答案)
- 牛仔面料成本核算
評論
0/150
提交評論