版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆啟慧全國大聯(lián)考高三數(shù)學第一學期期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(shù)z滿足,則z的虛部為()A. B.i C.–1 D.12.已知拋物線的焦點為,若拋物線上的點關于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.3.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.1284.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?5.已知全集為,集合,則()A. B. C. D.6.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個單位長度而得到,則函數(shù)的解析式為()A. B.C. D.7.給定下列四個命題:①若一個平面內的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④8.已知與之間的一組數(shù)據(jù):12343.24.87.5若關于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.59.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應填寫()A. B. C. D.10.若函數(shù),在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則實數(shù)的取值范圍是()A. B. C. D.11.已知,,則的大小關系為()A. B. C. D.12.已知為定義在上的偶函數(shù),當時,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某外商計劃在個候選城市中投資個不同的項目,且在同一個城市投資的項目不超過個,則該外商不同的投資方案有____種.14.設數(shù)列的前n項和為,且,若,則______________.15.(5分)國家禁毒辦于2019年11月5日至12月15日在全國青少年毒品預防教育數(shù)字化網絡平臺上開展2019年全國青少年禁毒知識答題活動,活動期間進入答題專區(qū),點擊“開始答題”按鈕后,系統(tǒng)自動生成20道題.已知某校高二年級有甲、乙、丙、丁、戊五位同學在這次活動中答對的題數(shù)分別是,則這五位同學答對題數(shù)的方差是____________.16.如圖,在體積為V的圓柱中,以線段上的點O為項點,上下底面為底面的兩個圓錐的體積分別為,,則的值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機取出3個球(逐個有放回地抽取),所得結果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個數(shù)3210實際付款7折8折9折原價(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?18.(12分)己知圓F1:(x+1)1+y1=r1(1≤r≤3),圓F1:(x-1)1+y1=(4-r)1.(1)證明:圓F1與圓F1有公共點,并求公共點的軌跡E的方程;(1)已知點Q(m,0)(m<0),過點E斜率為k(k≠0)的直線與(Ⅰ)中軌跡E相交于M,N兩點,記直線QM的斜率為k1,直線QN的斜率為k1,是否存在實數(shù)m使得k(k1+k1)為定值?若存在,求出m的值,若不存在,說明理由.19.(12分)若養(yǎng)殖場每個月生豬的死亡率不超過,則該養(yǎng)殖場考核為合格,該養(yǎng)殖場在2019年1月到8月養(yǎng)殖生豬的相關數(shù)據(jù)如下表所示:月份1月2月3月4月5月6月7月8月月養(yǎng)殖量/千只33456791012月利潤/十萬元3.64.14.45.26.27.57.99.1生豬死亡數(shù)/只293749537798126145(1)從該養(yǎng)殖場2019年2月到6月這5個月中任意選取3個月,求恰好有2個月考核獲得合格的概率;(2)根據(jù)1月到8月的數(shù)據(jù),求出月利潤y(十萬元)關于月養(yǎng)殖量x(千只)的線性回歸方程(精確到0.001).(3)預計在今后的養(yǎng)殖中,月利潤與月養(yǎng)殖量仍然服從(2)中的關系,若9月份的養(yǎng)殖量為1.5萬只,試估計:該月利潤約為多少萬元?附:線性回歸方程中斜率和截距用最小二乘法估計計算公式如下:,參考數(shù)據(jù):.20.(12分)如圖,在四棱錐中,側棱底面,,,,,是棱中點.(1)已知點在棱上,且平面平面,試確定點的位置并說明理由;(2)設點是線段上的動點,當點在何處時,直線與平面所成角最大?并求最大角的正弦值.21.(12分)已知,,,.(1)求的值;(2)求的值.22.(10分)已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線的左焦點在直線上.(Ⅰ)求的極坐標方程和曲線的參數(shù)方程;(Ⅱ)求曲線的內接矩形的周長的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用復數(shù)的四則運算可得,即可得答案.【詳解】∵,∴,∴,∴復數(shù)的虛部為.故選:C.【點睛】本題考查復數(shù)的四則運算、虛部概念,考查運算求解能力,屬于基礎題.2、B【解析】
由焦點得拋物線方程,設點的坐標為,根據(jù)對稱可求出點的坐標,寫出直線方程,聯(lián)立拋物線求交點,計算弦長即可.【詳解】拋物線的焦點為,則,即,設點的坐標為,點的坐標為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點睛】本題主要考查了拋物線的標準方程,簡單幾何性質,點關于直線對稱,屬于中檔題.3、C【解析】
根據(jù)給定的程序框圖,逐次計算,結合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點睛】本題主要考查了循環(huán)結構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,結合判斷條件求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.4、B【解析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點:交集及其運算.5、D【解析】
對于集合,求得函數(shù)的定義域,再求得補集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點睛】本題考查集合的補集、交集運算,考查具體函數(shù)的定義域,考查解一元二次不等式.6、A【解析】
由圖根據(jù)三角函數(shù)圖像的對稱性可得,利用周期公式可得,再根據(jù)圖像過,即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因為函數(shù)的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎題.7、D【解析】
利用線面平行和垂直,面面平行和垂直的性質和判定定理對四個命題分別分析進行選擇.【詳解】當兩個平面相交時,一個平面內的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選:D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查空間想象能力,是中檔題.8、D【解析】
利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結合表格數(shù)據(jù),即得解.【詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D【點睛】本題考查了線性回歸方程過樣本中心點的性質,考查了學生概念理解,數(shù)據(jù)處理,數(shù)學運算的能力,屬于基礎題.9、B【解析】
模擬程序框圖運行分析即得解.【詳解】;;.所以①處應填寫“”故選:B【點睛】本題主要考查程序框圖,意在考查學生對這些知識的理解掌握水平.10、D【解析】
利用導數(shù)求得在區(qū)間上的最大值和最小,根據(jù)三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域為,,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區(qū)間上的最大值為.要使在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當、時,成立,即,且,解得.所以的取值范圍是.故選:D【點睛】本小題主要考查利用導數(shù)研究函數(shù)的最值,考查恒成立問題的求解,屬于中檔題.11、D【解析】
由指數(shù)函數(shù)的圖像與性質易得最小,利用作差法,結合對數(shù)換底公式及基本不等式的性質即可比較和的大小關系,進而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質可知,由對數(shù)函數(shù)的圖像與性質可知,,所以最小;而由對數(shù)換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點睛】本題考查了指數(shù)式與對數(shù)式的化簡變形,對數(shù)換底公式及基本不等式的簡單應用,作差法比較大小,屬于中檔題.12、D【解析】
判斷,利用函數(shù)的奇偶性代入計算得到答案.【詳解】∵,∴.故選:【點睛】本題考查了利用函數(shù)的奇偶性求值,意在考查學生對于函數(shù)性質的靈活運用.二、填空題:本題共4小題,每小題5分,共20分。13、60【解析】試題分析:每個城市投資1個項目有種,有一個城市投資2個有種,投資方案共種.考點:排列組合.14、9【解析】
用換中的n,得,作差可得,從而數(shù)列是等比數(shù)列,再由即可得到答案.【詳解】由,得,兩式相減,得,即;又,解得,所以數(shù)列為首項為-3、公比為3的等比數(shù)列,所以.故答案為:9.【點睛】本題考查已知與的關系求數(shù)列通項的問題,要注意n的范圍,考查學生運算求解能力,是一道中檔題.15、2【解析】
由這五位同學答對的題數(shù)分別是,得該組數(shù)據(jù)的平均數(shù),則方差.16、【解析】
根據(jù)圓柱的體積為,以及圓錐的體積公式,計算即得.【詳解】由題得,,得.故答案為:【點睛】本題主要考查圓錐體的體積,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)選擇方案二更為劃算【解析】
(1)計算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計算概率得到數(shù)學期望,比較大小得到答案.【詳解】(1)該顧客獲得7折優(yōu)惠的概率,該顧客獲得8折優(yōu)惠的概率,故該顧客獲得7折或8折優(yōu)惠的概率.(2)若選擇方案一,則付款金額為.若選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,,則.因為,所以選擇方案二更為劃算.【點睛】本題考查了概率的計算,數(shù)學期望,意在考查學生的計算能力和應用能力.18、(1)見解析,(1)存在,【解析】
(1)求出圓和圓的圓心和半徑,通過圓F1與圓F1有公共點求出的范圍,從而根據(jù)可得點的軌跡,進而求出方程;(1)過點且斜率為的直線方程為,設,,聯(lián)立直線方程和橢圓方程,根據(jù)韋達定理以及,,可得,根據(jù)其為定值,則有,進而可得結果.【詳解】(1)因為,,所以,因為圓的半徑為,圓的半徑為,又因為,所以,即,所以圓與圓有公共點,設公共點為,因此,所以點的軌跡是以,為焦點的橢圓,所以,,,即軌跡的方程為;(1)過點且斜率為的直線方程為,設,由消去得到,則,,①因為,,所以,將①式代入整理得因為,所以當時,即時,.即存在實數(shù)使得.【點睛】本題考查橢圓定理求橢圓方程,考查橢圓中的定值問題,靈活應用韋達定理進行計算是關鍵,并且觀察出取定值的條件也很重要,考查了學生分析能力和計算能力,是中檔題.19、(1);(2);(3)利潤約為111.2萬元.【解析】
(1)首先列出基本事件,然后根據(jù)古典概型求出恰好兩個月合格的概率;(2)首先求出利潤y和養(yǎng)殖量x的平均值,然后根據(jù)公式求出線性回歸方程中的斜率和截距即可求出線性回歸方程;(3)根據(jù)線性回歸方程代入9月份的數(shù)據(jù)即可求出9月利潤.【詳解】(1)2月到6月中,合格的月份為2,3,4月份,則5個月份任意選取3個月份的基本事件有,,,,,,,,,,共計10個,故恰好有兩個月考核合格的概率為;(2),,,,故;(3)當千只,(十萬元)(萬元),故9月份的利潤約為111.2萬元.【點睛】本題主要考查了古典概型,線性回歸方程的求解和使用,屬于基礎題.20、(1)為中點,理由見解析;(2)當點在線段靠近的三等分點時,直線與平面所成角最大,最大角的正弦值.【解析】
(1)為中點,可利用中位線與平行四邊形性質證明,,從而證明平面平面;(2)以A為原點,分別以,,所在直線為、、軸建立空間直角坐標系,利用向量法求出當點在線段靠近的三等分點時,直線與平面所成角最大,并可求出最大角的正弦值.【詳解】(1)為中點,證明如下:分別為中點,又平面平面平面又,且四邊形為平行四邊形,同理,平面,又平面平面(2)以A為原點,分別以,,所在直線為、、軸建立空間直角坐標系則,設直線與平面所成角為,則取平面的法向量為則令,則所以當時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年技術開發(fā)股權協(xié)議
- 代理出口業(yè)務協(xié)議書
- 商品房承租轉讓協(xié)議
- 合法建房承包合同格式
- 標準口譯服務合同范本
- 物流運輸合同范例
- 最高額保證擔保借款合同書編寫要點
- 境外勞務輸出業(yè)務合同
- 電網調度合同范本
- 上海市住宅項目預訂合同樣本
- 河南科技大學《材料科學基礎》2021-2022學年第一學期期末試卷
- 2024塔吊司機的勞動合同范本
- 2024年國家公務員考試《行測》真題卷(副省級)答案及解析
- 江蘇省南京市秦淮區(qū)2023-2024學年八年級上學期期中語文試題及答案
- 2024年個人車位租賃合同參考范文(三篇)
- (完整版)新概念英語第一冊單詞表(打印版)
- 簽申工作準假證明中英文模板
- 員工履歷表(標準樣本)
- 2024年山東省濟南市中考數(shù)學真題(含答案)
- 山東省青島市黃島區(qū)2023-2024學年六年級上學期期中語文試卷
- 二手門市銷售合同范本
評論
0/150
提交評論