版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山西太原師范學(xué)院附中2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)aR,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.總體有編號為01,02,…,19,20的20個個體組成,利用下面的隨機數(shù)表選取3個個體,選取方法是從隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第3個個體的編號為()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.143.雙曲線的左、右焦點分別為、,P為雙曲線C的右支上一點.以O(shè)為圓心a為半徑的圓與相切于點M,且,則該雙曲線的漸近線為()A. B.C. D.4.某考點配備的信號檢測設(shè)備的監(jiān)測范圍是半徑為100米的圓形區(qū)域,一名工作人員持手機以每分鐘50米的速度從設(shè)備正東方向米的處出發(fā),沿處西北方向走向位于設(shè)備正北方向的處,則這名工作人員被持續(xù)監(jiān)測的時長為()A.1分鐘 B.分鐘C.2分鐘 D.分鐘5.函數(shù)在的最大值是()A. B.C. D.6.已知函數(shù),則函數(shù)在點處的切線方程為()A. B.C. D.7.設(shè)函數(shù),,,則()A. B.C. D.8.若在1和16中間插入3個數(shù),使這5個數(shù)成等比數(shù)列,則公比為()A. B.2C. D.49.已知點是點在坐標(biāo)平面內(nèi)的射影,則點的坐標(biāo)為()A. B.C. D.10.已知向量,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.已知點在橢圓上,與關(guān)于原點對稱,,交軸于點,為坐標(biāo)原點,,則橢圓離心率為()A. B.C. D.12.已知函數(shù),,若對任意的,,都有成立,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若向量與向量平行,則實數(shù)______14.已知空間向量,,若,則______.15.如圖,某建筑物的高度,一架無人機上的儀器觀測到建筑物頂部的仰角為,地面某處的俯角為,且,則此無人機距離地面的高度為________16.設(shè)正方形的邊長是,在該正方形區(qū)域內(nèi)隨機取一個點,則此點到點的距離大于的概率是_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,當(dāng)時,恒成立,求實數(shù)的取值范圍.18.(12分)已知橢圓)過點A(0,),且與雙曲線有相同的焦點(1)求橢圓C的方程;(2)設(shè)M,N是橢圓C上異于A的兩點,且滿足,試判斷直線MN是否過定點,并說明理由19.(12分)已知等差數(shù)列的前項和為,,且.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的前項和為,證明:.20.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在中,角,,所對的邊分別為,,,且滿足,,求面積的最大值21.(12分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)設(shè)為的導(dǎo)數(shù),若方程的兩根為,且,當(dāng)時,不等式對任意的恒成立,求正實數(shù)的最小值.22.(10分)已知動圓過點且動圓內(nèi)切于定圓:記動圓圓心的軌跡為曲線.(1)求曲線的方程;(2)若、是曲線上兩點,點滿足求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】運用兩直線平行的充要條件得出l1與l2平行時a的值,而后運用充分必要條件的知識來解決即可解:∵當(dāng)a=1時,直線l1:x+2y﹣1=0與直線l2:x+2y+4=0,兩條直線的斜率都是﹣,截距不相等,得到兩條直線平行,故前者是后者的充分條件,∵當(dāng)兩條直線平行時,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要條件故選A考點:必要條件、充分條件與充要條件的判斷;直線的一般式方程與直線的平行關(guān)系2、D【解析】由隨機數(shù)表法抽樣原理即可求出答案.【詳解】根據(jù)題意,依次讀出的數(shù)據(jù)為65(舍去),72(舍去),08,02,63(舍去),14,即第三個個體編號為14.故選:D.3、A【解析】連接、,利用中位線定理和雙曲線定義構(gòu)建參數(shù)關(guān)系,即求得漸近線方程.【詳解】如圖,連接、,∵M(jìn)是的中點,∴是的中位線,∴,且,根據(jù)雙曲線的定義,得,∴,∵與以原點為圓心a為半徑的圓相切,∴,可得,中,,即得,,解得,即,得.由此得雙曲線的漸近線方程為.故選:A.【點睛】本題考查了雙曲線的定義的應(yīng)用和漸近線的求法,屬于中檔題.4、C【解析】以設(shè)備的位置為坐標(biāo)原點,其正東方向為軸正方向,正北方向為軸正方向建立平面直角坐標(biāo)系,求得直線和圓的方程,利用點到直線的距離公式和圓的弦長公式,求得的長,進(jìn)而求得持續(xù)監(jiān)測的時長.【詳解】以設(shè)備的位置為坐標(biāo)原點,其正東方向為軸正方向,正北方向為軸正方向建立平面直角坐標(biāo)系,如圖所示,則,,可得,圓記從處開始被監(jiān)測,到處監(jiān)測結(jié)束,因為到的距離為米,所以米,故監(jiān)測時長為分鐘故選:C.5、C【解析】利用函數(shù)單調(diào)性求解.【詳解】解:因為函數(shù)是單調(diào)遞增函數(shù),所以函數(shù)也是單調(diào)遞增函數(shù),所以.故選:C6、C【解析】依據(jù)導(dǎo)數(shù)幾何意義去求函數(shù)在點處的切線方程即可解決.【詳解】則,又則函數(shù)在點處的切線方程為,即故選:C7、A【解析】根據(jù)導(dǎo)數(shù)得出在的單調(diào)性,進(jìn)而由單調(diào)性得出大小關(guān)系.【詳解】因為,所以在上單調(diào)遞增.因為,所以,而,所以.因為,且,所以.即.故選:A8、A【解析】根據(jù)等比數(shù)列的通項得:,從而可求出.【詳解】解:成等比數(shù)列,∴根據(jù)等比數(shù)列的通項得:,,故選:A.9、D【解析】根據(jù)空間中射影的定義即可得到答案.【詳解】因為點是點在坐標(biāo)平面內(nèi)的射影,所以的豎坐標(biāo)為0,橫、縱坐標(biāo)與A點的橫、縱坐標(biāo)相同,所以點的坐標(biāo)為.故選:D10、A【解析】根據(jù)平面向量垂直的性質(zhì),結(jié)合平面向量數(shù)量積的坐標(biāo)表示公式、充分性、必要性的定義進(jìn)行求解判斷即可.詳解】當(dāng)時,有,顯然由,但是由不一定能推出,故選:A11、B【解析】由,得到,結(jié)合,得到,進(jìn)而求得,得出,結(jié)合離心率的定義,即可求解.【詳解】設(shè),則,由,可得,所以,因為,可得,又由,兩式相減得,即,即,又因為,所以,即又由,所以,解得.故選:B.12、B【解析】根據(jù)題意,將問題轉(zhuǎn)化為對任意的,,利用導(dǎo)數(shù)求得的最大值,再分離參數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最大值,即可求得參數(shù)的取值范圍.【詳解】由題可知:對任意的,,都有恒成立,故可得對任意的,;又,則,故在單調(diào)遞減,在單調(diào)遞增,又,,則當(dāng)時,,.對任意的,,即,恒成立.也即,不妨令,則,故在單調(diào)遞增,在單調(diào)遞減.故,則只需.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】先求出的坐標(biāo),進(jìn)而根據(jù)空間向量平行的坐標(biāo)運算求得答案.【詳解】由題意,,因為,所以存在實數(shù)使得.故答案為:2.14、2【解析】依據(jù)向量垂直充要條件列方程,解之即可解決.【詳解】空間向量,,由,可知,即,解之得故答案為:215、200【解析】在Rt△ABC中求得AC的值,△ACQ中由正弦定理求得AQ的值,在Rt△APQ中求得PQ的值【詳解】根據(jù)題意,可得Rt△ABC中,∠BAC=60°,BC=300,∴AC200;△ACQ中,∠AQC=45°+15°=60°,∠QAC=180°﹣45°﹣60°=75°,∴∠QCA=180°﹣∠AQC﹣∠QAC=45°,由正弦定理,得,解得AQ200,在Rt△APQ中,PQ=AQsin45°=200200m故答案為200【點睛】本題考查了解三角形的應(yīng)用問題,考查正弦定理,三角形內(nèi)角和問題,考查轉(zhuǎn)化化歸能力,是基礎(chǔ)題16、【解析】先求出正方形的面積,然后求出動點到點的距離所表示的平面區(qū)域的面積,最后根據(jù)幾何概型計算公式求出概率.【詳解】正方形的面積為,如下圖所示:陰影部分的面積為:,在正方形內(nèi),陰影外面部分的面積為,則在該正方形區(qū)域內(nèi)隨機取一個點,則此點到點的距離大于的概率是.【點睛】本題考查了幾何概型的計算公式,正確求出陰影部分的面積是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析;(2).【解析】(1)求得,分、兩種情況討論,分析導(dǎo)數(shù)的符號變化,由此可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)利用參變量分離法可得出對任意的恒成立,構(gòu)造函數(shù),其中,利用導(dǎo)數(shù)求出函數(shù)在上的最小值,由此可求得實數(shù)的取值范圍.【小問1詳解】解:函數(shù)的定義域為,.因為,由,可得.①當(dāng)時,由可得,由可得.此時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;②當(dāng)時,由可得,由可得,此時,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.綜上所述,當(dāng)時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;當(dāng)時,函數(shù)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【小問2詳解】解:當(dāng)且時,由,可得,令,其中,.當(dāng)時,,此時函數(shù)單調(diào)遞減,當(dāng)時,,此時函數(shù)單調(diào)遞增,則,.18、(1)(2)直線過定點;理由見解析【解析】(1)根據(jù)題意可求得,進(jìn)而求得橢圓方程;(2)考慮直線斜率是否存在,設(shè)直線方程并聯(lián)立橢圓方程,得到根與系數(shù)的關(guān)系式,然后利用,將根與系數(shù)的關(guān)系式代入化簡得到,結(jié)合直線方程,化簡可得結(jié)論.【小問1詳解】依題意,,所以,故橢圓方程為:【小問2詳解】當(dāng)直線MN的斜率不存在時,設(shè)M(),N(,),則,,此時M,N重合,不符合題意;當(dāng)直線MN的斜率存在時,設(shè)MN的方程為:,M(,),N(),與橢圓方程聯(lián)立可得:,即,∴,即,∴,∴,∴,當(dāng)時,,直線MN:,即,令,則,∴直線過定點【點睛】本題考查了橢圓方程的求法以及直線和橢圓相交時過定點的問題,解答時要注意解題思路的順暢,解答的難點在于運算量較大且復(fù)雜,需要十分細(xì)心.19、(1);(2)證明見解析.【解析】(1)根據(jù)等差數(shù)列的性質(zhì)及題干條件,可求得,代入公式,即可求得數(shù)列的通項公式;(2)由(1)可得,利用裂項相消求和法,即可求得,即可得證.【詳解】解:(1)設(shè)數(shù)列的公差為,在中,令,得,即,故①.由得,所以②.由①②解得,.所以數(shù)列的通項公式為:.(2)由(1)可得,所以,故,所以.因為,所以.【點睛】數(shù)列求和的常見方法:(1)倒序相加法:如果一個數(shù)列的前n項中首末兩端等距離的兩項的和相等或等于同一個常數(shù),那么求這個數(shù)列的前n項和可以用倒序相加法;(2)錯位相減法:如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的對應(yīng)項之積構(gòu)成的,那么這個數(shù)列的前n項和可以用錯位相減法來求;(3)裂項相消法:把數(shù)列的通項拆成兩項之差,在求和時,中間的一些項可相互抵消,從而求得其和;(4)分組轉(zhuǎn)化法:一個數(shù)列的通項公式是由若干個等差數(shù)列或等比數(shù)列或可求和的數(shù)列組成,則求和時可用分組轉(zhuǎn)換法分別求和再相加減;(5)并項求和法:一個數(shù)列的前n項和可以兩兩結(jié)合求解,則稱之為并項求和,形如類型,可采用兩項合并求解.20、(1)(2)【解析】(1)由三角恒等變換公式化簡,根據(jù)三角函數(shù)性質(zhì)求解(2)由余弦定理與面積公式,結(jié)合基本不等式求解【小問1詳解】由己知可得,由,解得:,故的單調(diào)遞減區(qū)間是【小問2詳解】,,故,得,由余弦定理得:,得,當(dāng)且僅當(dāng)時等號成立,故,面積最大值為21、(1)(2)1【解析】(1)先求導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義可求得切線方程;(2)將已知方程結(jié)合其兩根,進(jìn)行變式,求得,利用該式再將不等式變形,然后將不等式的恒成立問題變?yōu)楹瘮?shù)的最值問題求解.【小問1詳解】由題意可得,所以切點為,則切線方程為:.【小問2詳解】由題意有:,則,因為分別是方程的兩個根,即.兩式相減,則,則不等式,可變?yōu)椋瑑蛇呁瑫r除以得,,令,則在上恒成立.整理可得,在上恒成立,令,則,①當(dāng),即時,在上恒成立,則在上單調(diào)遞增,又,則在上恒成立;②當(dāng),即時,當(dāng)時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 租借游艇問題課程設(shè)計
- 算法綜合設(shè)計課程設(shè)計
- 補貨管理的優(yōu)化與實施方案計劃
- 健身器材銷售業(yè)績總結(jié)
- 2024年煙花爆竹安全的應(yīng)急預(yù)案
- 銀行工作總結(jié)創(chuàng)新發(fā)展成果彰顯
- 醫(yī)藥包材采購心得總結(jié)
- 娛樂活動行業(yè)顧問工作總結(jié)提升娛樂活動吸引力
- 服務(wù)業(yè)會計工作內(nèi)容分析
- 2024年設(shè)備的管理制度范本
- 山東省濟(jì)南市2023-2024學(xué)年高一上學(xué)期期末考試生物試題(解析版)
- 2025年工程春節(jié)停工期間安全措施
- 2024版人才引進(jìn)住房租賃補貼協(xié)議3篇
- 川藏鐵路勘察報告范文
- 新零售智慧零售門店解決方案
- 小學(xué)一年級數(shù)學(xué)20以內(nèi)的口算題(可直接打印A4)
- 上海黃浦區(qū)2025屆物理高一第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析
- 肺結(jié)核課件教學(xué)課件
- 新生兒心臟病護(hù)理查房
- 規(guī)劃設(shè)計行業(yè)數(shù)字化轉(zhuǎn)型趨勢
- 2024年廣告代理合同的廣告投放范圍與分成比例
評論
0/150
提交評論