陜西省興平市秦嶺中學(xué)2025屆數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第1頁(yè)
陜西省興平市秦嶺中學(xué)2025屆數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第2頁(yè)
陜西省興平市秦嶺中學(xué)2025屆數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第3頁(yè)
陜西省興平市秦嶺中學(xué)2025屆數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第4頁(yè)
陜西省興平市秦嶺中學(xué)2025屆數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

陜西省興平市秦嶺中學(xué)2025屆數(shù)學(xué)高二上期末綜合測(cè)試試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,則的虛部為()A. B.C. D.2.已知向量,則下列結(jié)論正確的是()A.B.C.D.3.若,則下列結(jié)論不正確的是()A. B.C. D.4.和的等差中項(xiàng)與等比中項(xiàng)分別為()A., B.2,C., D.1,5.已知雙曲線離心率為2,過(guò)點(diǎn)的直線與雙曲線C交于A,B兩點(diǎn),且點(diǎn)P恰好是弦的中點(diǎn),則直線的方程為()A. B.C. D.6.不等式的解集為()A.或 B.C. D.7.春秋時(shí)期孔子及其弟子所著的《論語(yǔ)·顏淵》中有句話:“非禮勿視,非禮勿聽,非禮勿言,非禮勿動(dòng).”意思是:不符合禮的不看,不符合禮的不聽,不符合禮的不說(shuō),不符合禮的不做.“非禮勿聽”可以理解為:如果不合禮,那么就不聽.從數(shù)學(xué)角度來(lái)說(shuō),“合禮”是“聽”的()A.充分條件 B.必要條件C.充要條件 D.既不充分也不必要條件8.設(shè)函數(shù)在定義域內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.9.下列語(yǔ)句中是命題的是A.周期函數(shù)的和是周期函數(shù)嗎? B.C. D.梯形是不是平面圖形呢?10.若,則下列正確的是()A. B.C. D.11.已知平面的一個(gè)法向量為,則x軸與平面所成角的大小為()A. B.C. D.12.已知是空間的一個(gè)基底,,,,若四點(diǎn)共面.則實(shí)數(shù)的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等差數(shù)列中,,那么等于______.14.已知存在正數(shù)使不等式成立,則的取值范圍_____15.已知拋物線的焦點(diǎn)與的右焦點(diǎn)重合,則__________.16.雙曲線的漸近線方程為______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,已知在四棱錐中,平面,四邊形為直角梯形,,,.(1)求直線與平面所成角的正弦值;(2)在線段上是否存在點(diǎn),使得二面角的余弦值?若存在,指出點(diǎn)的位置;若不存在,說(shuō)明理由.18.(12分)如圖,四棱錐的底面是正方形,PD⊥底面ABCD,M為BC的中點(diǎn),(1)證明:;(2)設(shè)平面平面,求l與平面MND所成角的正弦值19.(12分)已知三棱柱中,面底面,,底面是邊長(zhǎng)為的等邊三角形,,、分別在棱、上,且.(1)求證:底面;(2)在棱上找一點(diǎn),使得和面所成角的余弦值為,并說(shuō)明理由.20.(12分)在中,角A,B,C所對(duì)的邊分別為a,b,c,且,,.(1)求角B;(2)求a,c的值及的面積.21.(12分)已知點(diǎn)在橢圓:上,橢圓E的離心率為.(1)求橢圓E的方程;(2)若不平行于坐標(biāo)軸且不過(guò)原點(diǎn)O的直線l與橢圓E交于B,C兩點(diǎn),判斷是否可能為等邊三角形,并說(shuō)明理由.22.(10分)已知等比數(shù)列前3項(xiàng)和為(1)求的通項(xiàng)公式;(2)若對(duì)任意恒成立,求m的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)復(fù)數(shù)的運(yùn)算化簡(jiǎn),由復(fù)數(shù)概念即可求解.【詳解】因?yàn)?,所以的虛部為,故選:A2、D【解析】由題可知:,,,故選;D3、B【解析】由得出,再利用不等式的基本性質(zhì)和基本不等式來(lái)判斷各選項(xiàng)中不等式的正誤.【詳解】,,,,A選項(xiàng)正確;,B選項(xiàng)錯(cuò)誤;由基本不等式可得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,,則等號(hào)不成立,所以,C選項(xiàng)正確;,,D選項(xiàng)正確.故選:B.【點(diǎn)睛】本題考查不等式正誤的判斷,涉及不等式的基本性質(zhì)和基本不等式,考查推理能力,屬于基礎(chǔ)題.4、C【解析】根據(jù)等差中項(xiàng)和等比中項(xiàng)的概念分別求值即可.【詳解】和的等差中項(xiàng)為,和的等比中項(xiàng)為.故選:C.5、C【解析】運(yùn)用點(diǎn)差法即可求解【詳解】由已知得,又,,可得.則雙曲線C的方程為.設(shè),,則兩式相減得,即.又因?yàn)辄c(diǎn)P恰好是弦的中點(diǎn),所以,,所以直線的斜率為,所以直線的方程為,即.經(jīng)檢驗(yàn)滿足題意故選:C6、A【解析】根據(jù)一元二次不等式的解法可得答案.【詳解】由不等式可得或不等式的解集為或故選:A7、B【解析】如果不合禮,那么就不聽.轉(zhuǎn)化為它的逆否命題.即可判斷出答案.【詳解】如果不合禮,那么就不聽的逆否命題為:如果聽,那么就合理.故“合禮”是“聽”的必要條件.故選:B.8、D【解析】根據(jù)的圖象可得的單調(diào)性,從而得到在相應(yīng)范圍上的符號(hào)和極值點(diǎn),據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個(gè)不同的零點(diǎn),且在這兩個(gè)零點(diǎn)的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點(diǎn)睛】本題考查導(dǎo)函數(shù)圖象的識(shí)別,此類問(wèn)題應(yīng)根據(jù)原函數(shù)的單調(diào)性來(lái)考慮導(dǎo)函數(shù)的符號(hào)與零點(diǎn)情況,本題屬于基礎(chǔ)題.9、B【解析】命題是能判斷真假的語(yǔ)句,疑問(wèn)句不是命題,易知為命題,故選B10、D【解析】根據(jù)不等式性質(zhì)并結(jié)合反例,即可判斷命題真假.【詳解】對(duì)于選項(xiàng)A:若,則,由題意,,不妨令,,則此時(shí),這與結(jié)論矛盾,故A錯(cuò)誤;對(duì)于選項(xiàng)B:當(dāng)時(shí),若,則,故B錯(cuò)誤;對(duì)于選項(xiàng)C:由,不妨令,,則此時(shí),故C錯(cuò)誤;對(duì)于選項(xiàng)D:由不等式性質(zhì),可知D正確.故選:D.11、C【解析】依題意可得軸的方向向量可以為,再利用空間向量法求出線面角的正弦值,即可得解;【詳解】解:依題意軸的方向向量可以為,設(shè)x軸與平面所成角為,則,因?yàn)?,所以,故選:C12、A【解析】由共面定理列式得,再根據(jù)對(duì)應(yīng)系數(shù)相等計(jì)算.【詳解】因?yàn)樗狞c(diǎn)共面,設(shè)存在有序數(shù)對(duì)使得,則,即,所以得.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、14【解析】根據(jù)等差數(shù)列的性質(zhì)得到,求得,再由,即可求解.【詳解】因?yàn)閿?shù)列為等差數(shù)列,且,根據(jù)等差數(shù)列的性質(zhì),可得,解答,又由.故答案為:14.14、(1,1)【解析】存在性問(wèn)題轉(zhuǎn)化為最大值,運(yùn)用均值不等式,求出的最大值,轉(zhuǎn)化成解對(duì)數(shù)不等式,進(jìn)而解出【詳解】解:∵,由于,則,∴,當(dāng)且僅當(dāng)時(shí),即:時(shí),∴有最大值,又存在正數(shù)使不等式成立,則,即,∴,即的取值范圍為:.故答案為:【點(diǎn)睛】本題考查均值不等式的應(yīng)用和對(duì)數(shù)不等式的解法,還涉及存在性問(wèn)題,考查化簡(jiǎn)計(jì)算能力15、【解析】求出拋物線的焦點(diǎn)坐標(biāo)即為的右焦點(diǎn)可得答案.【詳解】由題意可知:拋物線的焦點(diǎn)坐標(biāo)為,由題意知表示焦點(diǎn)在軸的橢圓,在橢圓中:,所以,因?yàn)?,所?故答案為:.16、【解析】將雙曲線方程化成標(biāo)準(zhǔn)方程,得到且,利用雙曲線漸近線方程,可得結(jié)果【詳解】把雙曲線化成標(biāo)準(zhǔn)方程為,且,雙曲線的漸近線方程為,即故答案為【點(diǎn)睛】本題主要考查利用雙曲線的方程求漸近線方程,意在考查對(duì)基礎(chǔ)知識(shí)的掌握情況,屬于基礎(chǔ)題.若雙曲線方程為,則漸近線方程為;若雙曲線方程為,則漸近線方程為.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)存在,為上靠近點(diǎn)的三等分點(diǎn)【解析】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系,求出的坐標(biāo)以及平面的一個(gè)法向量,計(jì)算即可求解;(2)假設(shè)線段上存在點(diǎn)符合題意,設(shè)可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【詳解】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系,如圖所示:則,,,.不妨設(shè)平面的一個(gè)法向量,則有,即,取.設(shè)直線與平面所成的角為,則,所以直線與平面所成角的正弦值為;(2)假設(shè)線段上存在點(diǎn),使得二面角的余弦值.設(shè),則,從而,,.設(shè)平面的法向量,則有,即,取.設(shè)平面的法向量,則有,即,取.,解得:或(舍),故存在點(diǎn)滿足條件,為上靠近點(diǎn)的三等分點(diǎn)【點(diǎn)睛】求空間角的常用方法:(1)定義法,由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對(duì)應(yīng)三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過(guò)計(jì)算向量夾角(直線方向向量與直線方向向量、直線方向向量與平面法向量,平面法向量與平面法向量)余弦值,即可求出結(jié)果.18、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得.(2)利用向量法求得與平面所成角的正弦值.【小問(wèn)1詳解】∵PD⊥平面ABCD,,以點(diǎn)D為坐標(biāo)原點(diǎn),DA,DC,DP所在直線分別為x,y,z軸建立如圖所示的空間直角坐標(biāo)系Dxyz,則D(0,0,0),N(,0,),P(0,0,2),M(1,2,0)所以,,所以,所以.【小問(wèn)2詳解】由正方形ABCD得,CD//AB,∵平面PAB,平面PAB,∴CD//平面PAB;又∵平面PCD,平面平面∴CD//l;于是CD與平面MND所成的角即為l與平面MND所成的角由(1)知,設(shè)平面MND的一個(gè)法向量,則,取,則,于是是平面MND的一個(gè)法向量,因?yàn)?,設(shè)l與平面MND所成角為,則19、(1)證明見解析;(2)為的中點(diǎn),理由見解析.【解析】(1)取的中點(diǎn),連接,利用面面垂直的性質(zhì)定理可得出平面,可得出,再由,結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,設(shè)點(diǎn),利用空間向量法可得出關(guān)于實(shí)數(shù)的方程,求出的值,即可得出結(jié)論.【詳解】(1)取的中點(diǎn),連接,如圖:因?yàn)槿切问堑冗吶切?,所以,又因?yàn)槊娴酌?,平面平面,面,所以平面,又面,所以,又,,平面;?)以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,則、、,在上找一點(diǎn),其中,,,,設(shè)面的一個(gè)法向量,則,不妨令,則,和面所成角的余弦值為,則,解得或(舍),所以,為的中點(diǎn),符合題意.20、(1)(2),,【解析】(1)利用正弦定理化簡(jiǎn)已知條件,求得,進(jìn)而求得.(2)利用余弦定理求得和,由此求得三角形的面積.【小問(wèn)1詳解】由于,∴.又∵,∴.∴.【小問(wèn)2詳解】∵,且,,,∴,解得或(舍).∴,.∴.21、(1)(2)三角形不可能是等邊三角形,理由見解析【解析】(1)根據(jù)點(diǎn)坐標(biāo)和離心率可得橢圓方程;(2)假設(shè)為等邊三角形,設(shè),與橢圓方程聯(lián)立,由韋達(dá)定理得的中點(diǎn)的坐標(biāo),,利用得出矛盾.小問(wèn)1詳解】由點(diǎn)在橢圓上,得,即,又,即,解得,所以橢圓的方程為.【小問(wèn)2詳解】假設(shè)為等邊三角形,設(shè),,聯(lián)立,消去得,由韋達(dá)定

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論