版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣東省江門市江海區(qū)禮樂中學2025屆數(shù)學高二上期末預測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線l1:mx-2y+1=0,l2:x-(m-1)y-1=0,則“m=2”是“l(fā)1平行于l2”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件2.中,內(nèi)角A,B,C的對邊分別為a,b,c,若,則等于()A. B.C. D.3.下列函數(shù)是偶函數(shù)且在上是減函數(shù)的是A. B.C. D.4.已知橢圓的兩個焦點分別為,且平行于軸的直線與橢圓交于兩點,那么的值為()A. B.C. D.5.一質(zhì)點的運動方程為(位移單位:m,時間單位:s),則該質(zhì)點在時的瞬時速度為()A.4 B.12C.15 D.216.過點的直線在兩坐標軸上的截距之和為零,則該直線方程為()A. B.C.或 D.或7.年月日我國公布了第七次全國人口普查結(jié)果.自新中國成立以來,我國共進行了七次全國人口普查,如圖為我國歷次全國人口普查人口性別構成及總?cè)丝谛詣e比(以女性為,男性對女性的比例)統(tǒng)計圖,則下列說法錯誤的是()A.第五次全國人口普查時,我國總?cè)丝跀?shù)已經(jīng)突破億B.第一次全國人口普查時,我國總?cè)丝谛詣e比最高C.我國歷次全國人口普查總?cè)丝跀?shù)呈遞增趨勢D.我國歷次全國人口普查總?cè)丝谛詣e比呈遞減趨勢8.拋物線的準線方程為()A B.C. D.9.甲組數(shù)據(jù)為:5,12,16,21,25,37,乙組數(shù)據(jù)為:1,6,14,18,38,39,則甲、乙的平均數(shù)、極差及中位數(shù)相同的是()A.極差 B.平均數(shù)C.中位數(shù) D.都不相同10.已知數(shù)列滿足,,則的最小值為()A. B.C. D.11.函數(shù)的導函數(shù)為()A. B.C. D.12.已知點,動點P滿足,則點P的軌跡為()A橢圓 B.雙曲線C.拋物線 D.圓二、填空題:本題共4小題,每小題5分,共20分。13.將集合且中所有的元素從小到大排列得到的數(shù)列記為,則___________(填數(shù)值).14.寫出一個漸近線的傾斜角為且焦點在y軸上的雙曲線標準方程___________.15.某班名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示.根據(jù)頻率分布直方圖,估計該班本次測試平均分為______16.若橢圓的長軸是短軸的2倍,且經(jīng)過點,則橢圓的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,平面ABC,,,,點D,E分別在棱和棱上,且,,M為棱中點(1)求證:;(2)求直線AB與平面所成角的正弦值18.(12分)點A、B分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.(1)求點P的坐標;(2)設M是橢圓長軸AB上的一點,M到直線AP的距離等于,求橢圓上的點到點M的距離的最小值.19.(12分)如圖,在梯形中,,四邊形為矩形,且平面,.(1)求證:;(2)點在線段(不含端點)上運動,設直線與平面所成角為,求的取值范圍.20.(12分)已知P,Q的坐標分別為,,直線PM,QM相交于點M,且它們的斜率之積是.設點M的軌跡為曲線C.(1)求曲線的方程;(2)設為坐標原點,圓的半徑為1,直線:與圓相切,且與曲線交于不同的兩點A,B.當,且滿足時,求面積的取值范圍.21.(12分)在中,,,請再從條件①、條件②這兩個條件中選擇一個作為已知,然后解答下列問題.(1)求角的大小;(2)求的面積.條件①:;條件②:.22.(10分)已知圓與x軸交于A,B兩點,P是該圓上任意一點,AP,PB的延長線分別交直線于M,N兩點.(1)若弦AP長為2,求直線PB的方程;(2)以線段MN為直徑作圓C,當圓C面積最小時,求此時圓C的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用兩直線平行的等價條件求得m,再結(jié)合充分必要條件進行判斷即可.【詳解】由直線l1平行于l2得-m(m-1)=1×(-2),得m=2或m=-1,經(jīng)驗證,當m=-1時,直線l1與l2重合,舍去,所以“m=2”是“l(fā)1平行于l2”的充要條件,故選C.【點睛】本題考查兩直線平行的條件,準確計算是關鍵,注意充分必要條件的判斷是基礎題2、A【解析】由題得,進而根據(jù)余弦定理求解即可.【詳解】解:依題意,即,所以,所以,由于,所以故選:A3、C【解析】根據(jù)題意,依次分析選項中函數(shù)的奇偶性與單調(diào)性,綜合即可得答案【詳解】根據(jù)題意,依次分析選項:對于A,為一次函數(shù),不是偶函數(shù),不符合題意;對于B,,,為奇函數(shù),不是偶函數(shù),不符合題意;對于C,,為二次函數(shù),是偶函數(shù)且在上是減函數(shù),符合題意;對于D,,,為奇函數(shù),不是偶函數(shù),不符合題意;故選C【點睛】本題考查函數(shù)的奇偶性與單調(diào)性的判定,關鍵是掌握常見函數(shù)的奇偶性與單調(diào)性,屬于基礎題4、A【解析】根據(jù)橢圓的方程求出,再由橢圓的對稱性及定義求解即可.【詳解】由橢圓的對稱性可知,,所以,又橢圓方程為,所以,解得,所以,故選:A5、B【解析】由瞬時變化率的定義,代入公式求解計算.【詳解】由題意,該質(zhì)點在時的瞬時速度為.故選:B6、D【解析】分截距為零和不為零兩種情況討論即可﹒【詳解】當直線過原點時,滿足題意,方程為,即2x-y=0;當直線不過原點時,設方程為,∵直線過(1,2),∴,∴,∴方程為,故選:D﹒7、D【解析】根據(jù)統(tǒng)計圖判斷各選項的對錯.【詳解】由統(tǒng)計圖第五次全國人口普查時,男性和女性人口數(shù)都超過6億,故總?cè)丝跀?shù)超過12億,A對,由統(tǒng)計圖,第一次全國人口普查時,我國總?cè)丝谛詣e比為107.56,超過余下幾次普查的人口的性別比,B對,由統(tǒng)計圖可知,我國歷次全國人口普查總?cè)丝跀?shù)呈遞增趨勢,C對,由統(tǒng)計圖可知,第二次,第三次,第四次,第五次時總?cè)丝谛詣e比呈遞增趨勢,D錯,D錯,故選:D.8、D【解析】根據(jù)拋物線方程求出,進而可得焦點坐標以及準線方程.【詳解】由可得,所以焦點坐標為,準線方程為:,故選:D.9、B【解析】由平均數(shù)、極差及中位數(shù)的定義依次求解即可比較【詳解】,,故甲、乙的平均數(shù)相同,甲、乙的極差分別為,,故不同,甲、乙的中位數(shù)分別為,,故不同,故選:10、C【解析】采用疊加法求出,由可得,結(jié)合對勾函數(shù)性質(zhì)分析在或6取到最小值,代值運算即可求解.【詳解】因為,所以,,,,式相加可得,所以,,當且僅當取到,但,,所以時,當時,,,所以的最小值為.故選:C11、B【解析】利用復合函數(shù)求導法則即可求導.【詳解】,故選:B.12、A【解析】根據(jù)橢圓的定義即可求解.【詳解】解:,故,又,根據(jù)橢圓的定義可知:P的軌跡為橢圓.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、992【解析】列舉數(shù)列的前幾項,觀察特征,可得出.詳解】由題意得觀察規(guī)律可得中,以為被減數(shù)的項共有個,因為,所以是中的第5項,所以.故答案為:992.14、(答案不唯一)【解析】根據(jù)已知條件寫出一個符合條件的方程即可.【詳解】如,焦點在y軸上,令,得漸近線方程為,其中的傾斜角為.故答案為:(答案不唯一).15、【解析】將每個矩形底邊的中點值乘以對應矩形的面積,即可得解.【詳解】由頻率分布直方圖可知,該班本次測試平均分為.故答案為:.16、【解析】分類討論焦點在軸與焦點在軸兩種情況.【詳解】因為橢圓經(jīng)過點,當焦點在軸時,可知,,所以,所以,當焦點在軸時,同理可得.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)由線面垂直、等腰三角形的性質(zhì)易得、,再根據(jù)線面垂直的判定及性質(zhì)證明結(jié)論;(2)構建空間直角坐標系,確定相關點坐標,進而求的方向向量、面的法向量,應用空間向量夾角的坐標表示求直線與平面所成角的正弦值.【小問1詳解】在三棱柱中,平面,則平面,由平面,則,,則,又為的中點,則,又,則平面,由平面,因此,.【小問2詳解】以為原點,以,,為軸、軸、軸的正方向建立空間直角坐標系,如圖所示,可得:,,,,,,.∴,,,,設為面的法向量,則,令得,設與平面所成角為,則,∴直線與平面所成角的正弦值為.18、(1)(,).(2)【解析】(1)根據(jù)條件列關于P點坐標得方程組,解得結(jié)果,(2)先根據(jù)點到直線距離公式結(jié)合條件解得點M坐標,再建立的函數(shù)解析式,最后根據(jù)二次函數(shù)性質(zhì)求最小值.【詳解】解:(1)由已知可得點A(-6,0),F(4,0)設點P(,),則={+6,},={-4,},由已知可得則2+9-18=0,解得=或=-6.由于>0,只能=,于是=.∴點P的坐標是(,).(2)直線AP的方程是-+6=0.設點M(,0),則M到直線AP的距離是.于是=,又-6≤≤6,解得=2.橢圓上的點(,)到點M的距離為,則,由于-6≤≤6,∴當=時,取得最小值.【點睛】本題考查直線與橢圓位置關系,考查基本分析求解能力,屬中檔題.19、(1)證明見解析(2)【解析】(1)過作,垂足為,利用正余弦定理可證,再利用線線垂足證明線面垂直,進而可得證;(2)以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系,利用坐標法求線面夾角的正弦值.【小問1詳解】證明:由已知可得四邊形是等腰梯形,過作,垂足為,則,在中,,則,可得,在中,由余弦定理可得,,則,,又平面,平面,,,,平面,平面,又為矩形,,則平面,而平面,;【小問2詳解】平面,且,以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系,則,,,,,設,則,又,設平面的法向量為,由,取,得,又,,,,則.20、(1)(2)【解析】【小問1詳解】設點,則,整理得曲線的方程:【小問2詳解】因為圓的半徑為1,直線:與圓相切,則,,設,將代入得,,,,,所以,,因為,令,在上單調(diào)減,,所以21、(1)條件選擇見解析,(2)【解析】(1)選①,利用余弦定理求出的值,結(jié)合角的取值范圍,即可求得角的值;選②,利用余弦定理可求出的值,并利用余弦定理求出的值,結(jié)合角的取值范圍,即可求得角的值;(2)利用三角形的面積公式可求得的面積.【小問1詳解】解:選①,,由余弦定理可得,,所以,.選②,,整理可得,,解得,由余弦定理可得,,所以,.【小問2詳解】解:由三角形的面積公式可得.22、(1)或;(2).【解析】(1)根據(jù)圓的直徑的性質(zhì),結(jié)合銳角三角函數(shù)定義進行求解即可;(2)根據(jù)題意,結(jié)合基本不等式和圓的標準方程進行求解即可.【小問1詳解】在方程中,令,解得,或,因為AP,PB的延長線分別交直線于M,N兩點,所以,圓心在x軸上,所以,因為,,所以有,當P在x軸上方時,直線P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工會福利招標后合同書
- 《多發(fā)傷的救治》課件
- 2025年福州貨運從業(yè)資格考試題目和答案大全
- 2025年常州貨運資格證500道題庫
- 《復習免疫調(diào)節(jié)》課件
- 酒店業(yè)應收款項回收策略
- 獨立辦公室租賃合同
- 商業(yè)中心卷簾門施工合同
- 酒店客戶信息移交辦法
- 釀酒廠食堂外包服務評估
- 電氣自動化專業(yè)職業(yè)生涯目標規(guī)劃書范例及步驟
- 2024-2025學年上學期天津六年級英語期末模擬卷1
- 餐飲行業(yè)智能點餐與外賣系統(tǒng)開發(fā)方案
- 2024-2025學年九年級數(shù)學上學期期末考試卷
- 水利工程特點、重點、難點及應對措施
- 物業(yè)經(jīng)理轉(zhuǎn)正述職
- 24秋國家開放大學《企業(yè)信息管理》形考任務1-4參考答案
- 2024年共青團團課培訓考試題庫及答案
- 2024年共青團入團考試測試題庫及答案
- 工程項目管理-001-國開機考復習資料
- 2022年全國應急普法知識競賽試題庫大全-下(判斷題庫-共4部分-2)
評論
0/150
提交評論