上海市上南中學2025屆高二上數(shù)學期末聯(lián)考模擬試題含解析_第1頁
上海市上南中學2025屆高二上數(shù)學期末聯(lián)考模擬試題含解析_第2頁
上海市上南中學2025屆高二上數(shù)學期末聯(lián)考模擬試題含解析_第3頁
上海市上南中學2025屆高二上數(shù)學期末聯(lián)考模擬試題含解析_第4頁
上海市上南中學2025屆高二上數(shù)學期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市上南中學2025屆高二上數(shù)學期末聯(lián)考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知曲線與直線總有公共點,則m的取值范圍是()A. B.C. D.2.已知橢圓的離心率為,左、右焦點分別為、,過作軸的平行線交橢圓于、兩點,為坐標原點,雙曲線的虛軸長為,且以、為頂點,以直線、為漸近線,則橢圓的短軸長為()A. B.C. D.3.對于圓上任意一點的值與x,y無關,有下列結論:①當時,r有最大值1;②在r取最大值時,則點的軌跡是一條直線;③當時,則.其中正確的個數(shù)是()A.3 B.2C.1 D.04.直線過點且與雙曲線僅有一個公共點,則這樣的直線有()A.1條 B.2條C.3條 D.4條5.變量,之間的一組相關數(shù)據如表所示:若,之間的線性回歸方程為,則的值為()45678.27.86.65.4A. B.C. D.6.已知為等比數(shù)列的前n項和,,,則()A.30 B.C. D.30或7.在空間直角坐標系中,若,,則點B的坐標為()A.(3,1,﹣2) B.(-3,1,2)C.(-3,1,-2) D.(3,-1,2)8.已知點到直線的距離為1,則m的值為()A.或 B.或15C.5或 D.5或159.已知數(shù)列滿足,其前項和為,,.若數(shù)列的前項和為,則滿足成立的的最小值為()A.10 B.11C.12 D.1310.已知拋物線的焦點是雙曲線的一個焦點,則雙曲線的漸近線方程為()A. B.C. D.11.已知橢圓的長軸長為,短軸長為,則橢圓上任意一點到橢圓中心的距離的取值范圍是()A. B.C. D.12.當時,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,,,P,F(xiàn)分別是線段,的中點,則點P到直線EF的距離是___________.14.已知點P是拋物線上的一個動點,則點P到點M(0,2)的距離與點P到該拋物線準線的距離之和的最小值為______________15.拋物線的焦點到準線的距離是______.16.某足球俱樂部選拔青少年隊員,每人要進行3項測試.甲隊員每項測試通過的概率均為,且不同測試之間相互獨立,設他通過的測試項目數(shù)為X,則_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)(1)已知等軸雙曲線的上頂點到一條漸近線的距離為,求此雙曲線的方程;(2)已知拋物線的焦點為,設過焦點且傾斜角為的直線交拋物線于,兩點,求線段的長18.(12分)立德中學舉行冬令營活動期間,對位參加活動的學生進行了文化和體能測試,滿分為150分,其測試成績都在90分和150分之間,成績在認定為“一般”,成績在認定為“良好”,成績在認定為“優(yōu)秀”.成績統(tǒng)計人數(shù)如下表:體能文化一般良好優(yōu)秀一般0良好3優(yōu)秀2例如,表中體能成績良好且文化成績一般的學生有2人(1)若從這位參加測試的學生中隨機抽取一位,抽到文化或體能優(yōu)秀的學生概率為.求,的值;(2)在(1)的情況下,從體能成績優(yōu)秀的學生中,隨機抽取2人,求至少有一個人文化的成績?yōu)閮?yōu)秀的概率;(3)若讓使參加體能測試的成績方差最小,寫出的值.(直接寫出答案)19.(12分)已知拋物線C:x2=2py的焦點為F,點N(t,1)在拋物線C上,且|NF|=.(1)求拋物線C的方程;(2)過點M(0,1)的直線l交拋物線C于不同的兩點A,B,設O為坐標原點,直線OA,OB的斜率分別為k1,k2,求證:k1k2為定值.20.(12分)已知數(shù)列的前n項和為,且,,數(shù)列滿足,.(1)求和的通項公式;(2)求數(shù)列{}的前n項和.21.(12分)已知數(shù)列是公差不為0的等差數(shù)列,數(shù)列是公比為2的等比數(shù)列,是,的等比中項,,.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前項和.22.(10分)已知橢圓,點在上,,且(1)求出直線所過定點的坐標;(不需要證明)(2)過A點作的垂線,垂足為,是否存在點,使得為定值?若存在,求出的值;若不存在,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】對曲線化簡可知曲線表示以點為圓心,2為半徑的圓的下半部分,對直線方程化簡可得直線過定點,畫出圖形,由圖可知,,然后求出直線的斜率即可【詳解】由,得,因為,所以曲線表示以點為圓心,2為半徑的圓的下半部分,由,得,所以,得,所以直線過定點,如圖所示設曲線與軸的兩個交點分別為,直線過定點,為曲線上一動點,根據圖可知,若曲線與直線總有公共點,則,得,設直線為,則,解得,或,所以,所以,所以,故選:D2、C【解析】不妨取點在第一象限,根據橢圓與雙曲線的幾何性質,以及它們之間的聯(lián)系,可得點的坐標,再將其代入橢圓的方程中,解之即可【詳解】解:由題意知,在橢圓中,有,在雙曲線中,有,,即,雙曲線的漸近線方程為,不妨取點在第一象限,則的坐標為,即,將其代入橢圓的方程中,有,,解得,橢圓的短軸長為故選:3、B【解析】可以看作點到直線與直線距離之和的倍,的取值與,無關,這個距離之和與點在圓上的位置無關,圓在兩直線內部,則,的距離為,則,,對于①,當時,r有最大值1,得出結論;對于②在r取最大值時,則點的軌跡是一條平行與,的直線,得出結論;對于③當時,則得出結論.【詳解】設,故可以看作點到直線與直線距離之和的倍,的取值與,無關,這個距離之和與點在圓上的位置無關,可知直線平移時,點與直線,的距離之和均為,的距離,即此時圓在兩直線內部,,的距離為,則,對于①,當時,r有最大值1,正確;對于②在r取最大值時,則點的軌跡是一條平行與,的直線,正確;對于③當時,則即,解得或,故錯誤.故正確結論有2個,故選:B.4、C【解析】根據直線的斜率存在與不存在,分類討論,結合雙曲線的漸近線的性質,即可求解.【詳解】當直線的斜率不存在時,直線過雙曲線的右頂點,方程為,滿足題意;當直線的斜率存在時,若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個公共點.綜上可得,滿足條件的直線共有3條.故選:C.【點睛】本題主要考查了直線與雙曲線的位置關系,以及雙曲線的漸近線的性質,其中解答中忽視斜率不存在的情況是解答的一個易錯點,著重考查了分析問題和解答問題的能力,以及分類討論思想的應用,屬于基礎題.5、C【解析】本題先求樣本點中心,再利用線性回歸方程過樣本點中心直接求解即可.【詳解】解:,,所以樣本點中心:,線性回歸方程過樣本點中心,則解得:,故選:C【點睛】本題考查線性回歸方程過樣本點中心,是簡單題.6、A【解析】利用等比數(shù)列基本量代換代入,列方程組,即可求解.【詳解】由得,則等比數(shù)列的公比,則得,令,則即,解得或(舍去),,則故選:A7、C【解析】利用點的坐標表示向量坐標,即可求解.【詳解】設,,,所以,,,解得:,,,即.故選:C8、D【解析】利用點到直線距離公式即可得出.【詳解】解:點到直線的距離為1,解得:m=15或5故選:D.9、A【解析】根據題意和對數(shù)的運算公式可證得為以2為首項,2為公比的等比數(shù)列,求出,進而得到,利用裂項相消法求得,再解不等式即可.【詳解】由,又,所以數(shù)列是以2為首項,2為公比的等比數(shù)列,故,則,所以,由,得,即,有,又,所以,即n的最小值為10.故選:A10、B【解析】根據拋物線和寫出焦點坐標,利用題干中的坐標相等,解出,結合從而求出答案.【詳解】拋物線的焦點為,雙曲線的,,所以,所以雙曲線的右焦點為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.11、A【解析】不妨設橢圓的焦點在軸上,設點,則,且有,利用二次函數(shù)的基本性質可求得的取值范圍.【詳解】不妨設橢圓的焦點在軸上,則該橢圓的標準方程為,設點,則,且有,所以,.故選:A.12、A【解析】設,對實數(shù)的取值進行分類討論,求得,解不等式,綜合可得出實數(shù)的取值范圍.【詳解】設,其中.①當時,即當時,函數(shù)在區(qū)間上單調遞增,則,解得,此時不存在;②當時,,解得;③當時,即當時,函數(shù)在區(qū)間上單調遞減,則,解得,此時不存在.綜上所述,實數(shù)的取值范圍是.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以A為坐標原點建立空間直角坐標系,利用向量法即可求解點P到直線EF的距離.【詳解】解:如圖,以A為坐標原點,,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,因為,所以,,,所以,,所以點P到直線EF的距離.故答案為:.14、【解析】由拋物線的定義得:,所以,當三點共線時,最小可得答案.【詳解】如圖所示:,由拋物線的定義得:,所以,由圖象知:當三點共線時,最小,.故答案為:.15、4【解析】由y2=2px=8x知p=4,又焦點到準線的距離就是p,所以焦點到準線的距離為4.16、【解析】根據二項分布的方差公式即可求出【詳解】因為,所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)8.【解析】(1)由等軸雙曲線的一條漸近線方程為,再由點到直線距離公式求解即可;(2)求得直線方程代入拋物線,結合焦點弦長求解即可.【詳解】(1)由等軸雙曲線的一條漸近線方程為,且頂點到漸近線的距離為,可得,解得,故雙曲線方程(2)拋物線的焦點為直線的方程為,即與拋物線方程聯(lián)立,得,消,整理得,設其兩根為,,且由拋物線的定義可知,所以,線段的長是【點睛】(1)直線與拋物線的位置關系和直線與橢圓、雙曲線的位置關系類似,一般要用到根與系數(shù)的關系;(2)有關直線與拋物線弦長問題,要注意直線是否過拋物線的焦點,若過拋物線的焦點,可直接使用公式|AB|=x1+x2+p,若不過焦點,則必須用一般弦長公式18、(1),;(2);(3).【解析】(1)由題設可得求參數(shù)a,結合表格數(shù)據及已知總學生人數(shù)求參數(shù)b.(2)應用列舉法求古典概型的概率.(3)應用表格數(shù)據及方差公式可得且,即可確定成績方差最小對應的值.【小問1詳解】設事件:從位學生中隨機抽取一位,抽到文化或體能優(yōu)秀的學生由題意知,體能或文化優(yōu)秀的學生共有人,則,解得所以;【小問2詳解】體能成績?yōu)閮?yōu)秀的學生共有5人,在這5人中,文化成績一般的人記為;文化成績良好的人記為;文化成績優(yōu)秀的人記為從文化成績優(yōu)秀的學生中,隨機抽取2人的樣本空間,設事件:至少有一個人文化的成績?yōu)閮?yōu)秀,,所以,體能成績優(yōu)秀的學生中,隨機抽取2人,至少有一個人文化成績?yōu)閮?yōu)秀的概率是;【小問3詳解】由題設知:體能測試成績,{一般,良好,優(yōu)秀}人數(shù)分別為{5,,},對應平均分為{100,120,140},所以體能測試平均成績,所以,而所以當時最小.19、(1)x2=2y;(2)證明見解析【解析】(1)利用拋物線的定義進行求解即可;(2)設直線l的直線方程與拋物線方程聯(lián)立,根據一元二次方程根與系數(shù)關系、斜率公式進行證明即可.【小問1詳解】∵點N(t,1)在拋物線C:x2=2py上,且|NF|=,∴|NF|=,解得p=1,∴拋物線C的方程為x2=2y;【小問2詳解】依題意,設直線l:y=kx+1,A(x1,y1),B(x2,y2),聯(lián)立,得x2﹣2kx﹣2=0.則x1x2=﹣2,∴.故k1k2為定值.【點睛】關鍵點睛:利用拋物線的定義是解題的關鍵.20、(1);;(2)【解析】(1)求數(shù)列的通項公式主要利用求解,分情況求解后要驗證是否滿足的通項公式,將求得的代入整理即可得到的通項公式;(2)整理數(shù)列的通項公式得,依據特點采用錯位相減法求和試題解析:(1)∵,∴當時,.當時,.∵時,滿足上式,∴.又∵,∴,解得:.故,,.(2)∵,,∴①②由①-②得:∴,.考點:1.數(shù)列通項公式求解;2.錯位相減法求和【方法點睛】求數(shù)列的通項公式主要利用,分情況求解后,驗證的值是否滿足關系式,解決非等差等比數(shù)列求和問題,主要有兩種思路:其一,轉化的思想,即將一般數(shù)列設法轉化為等差或等比數(shù)列,這一思想方法往往通過通項分解(即分組求和)或錯位相減來完成,其二,不能轉化為等差等比數(shù)列的,往往通過裂項相消法,倒序相加法來求和,本題中,根據特點采用錯位相減法求和21、(1)(2)【解析】(1)根據是,的等比中項,且,,由求解;(2)由(1)得到,再利用錯位相減法求解.【小問1詳解】解:因為是,的等比中項,且,,所以,解得,,所以;【小問2詳解】由(1)得,所以,則,兩式相減得,,,所以.22、(1)(2)存在,【解析】(1)分斜率存在和斜率不存在兩種情況,當斜率存在時,設出直線方程,聯(lián)立橢圓方程,利用韋達定理列出方程,求出定點坐標,當斜率不存在時,設出點的坐標進行求解;(2)結合第一問的定點坐標,結合直角三角形斜邊中線得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論