版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
專題4.8全等三角形中的經(jīng)典模型重難點題型【北師大版】【題型1平移模型】【模型解讀】把△ABC沿著某一條直線l平行移動,所得到△DEF與△ABC稱為平移型全等三角形,圖①,圖②是常見的平移型全等三角線.【常見模型】【例1】(2020秋?襄城區(qū)期末)如圖,點B、E、C、F四點在一條直線上,∠A=∠D,AB∥DE,老師說:再添加一個條件就可以使△ABC≌△DEF.下面是課堂上三個同學的發(fā)言,甲說:添加AB=DE;乙說:添加AC∥DF;丙說:添加BE=CF.(1)甲、乙、丙三個同學說法正確的是;(2)請你從正確的說法中選擇一種,給出你的證明.【解題思路】(1)根據(jù)平行線的性質(zhì),由AB∥DE可得∠B=∠DEC,再加上條件∠A=∠D,只需要添加一個能得出邊相等的條件即可證明兩個三角形全等,添加AC∥DF不能證明△ABC≌△DEF;(2)添加AB=DE,然后再利用ASA判定△ABC≌△DEF即可.【解答過程】解:(1)說法正確的是:甲、丙,故答案為:甲、丙;(2)證明:∵AB∥DE,∴∠B=∠DEC,在△ABC和△DEF中∠A=∠DAB=DE∴△ABC≌△DEF(ASA).【變式11】(2020秋?蘇州期末)如圖,AD,BF相交于點O,AB∥DF,AB=DF,點E與點C在BF上,且BE=CF.(1)求證:△ABC≌△DFE;(2)求證:點O為BF的中點.【解題思路】(1)由“SAS”可證△ABC≌△DFE;(2)由“AAS”可證△ACO≌△DEO,可得EO=CO,可得結(jié)論.【解答過程】證明:(1)∵AB∥DF,∴∠B=∠F,∵BE=CF,∴BC=EF,在△ABC和△DFE中,AB=DF∠B=∠F∴△ABC≌△DFE(SAS);(2)∵△ABC≌△DFE,∴AC=DE,∠ACB=∠DEF,在△ACO和△DEO中,∠ACB=∠DEF∠AOC=∠DOE∴△ACO≌△DEO(AAS),∴EO=CO,∴點O為BF的中點.【變式12】(2020秋?富順縣校級月考)如圖1,A,B,C,D在同一直線上,AB=CD,DE∥AF,且DE=AF,求證:△AFC≌△DEB.如果將BD沿著AD邊的方向平行移動,如圖2,3時,其余條件不變,結(jié)論是否成立?如果成立,請予以證明;如果不成立,請說明理由.【解題思路】可以根據(jù)已知利用SAS判定△AFC≌△DEB.如果將BD沿著AD邊的方向平行移動,如圖(2)、(3)時,其余條件不變,結(jié)論仍然成立.可以利用全等三角形的常用的判定方法進行驗證.【解答過程】解:∵AB=CD,∴AB+BC=CD+BC,即AC=BD.∵DE∥AF,∴∠A=∠D.在△AFC和△DEB中,AF=DE∠A=∠D∴△AFC≌△DEB(SAS).在(2),(3)中結(jié)論依然成立.如在(3)中,∵AB=CD,∴AB﹣BC=CD﹣BC,即AC=BD,∵AF∥DE,∴∠A=∠D.在△ACF和△DEB中,AF=DE∠A=∠D∴△ACF≌△DEB(SAS).【變式13】(2021春?雁塔區(qū)校級期中)如圖①點A、B、C、D在同一直線上,AB=CD,作CE⊥AD,BF⊥AD,且AE=DF.(1)證明:EF平分線段BC;(2)若△BFD沿AD方向平移得到圖②時,其他條件不變,(1)中的結(jié)論是否仍成立?請說明理由.【解題思路】(1)由AB=CD,利用等式的性質(zhì)得到AC=BD,再由AE=DF,利用HL得到直角三角形ACE與直角三角形DBF全等,利用全等三角形對應(yīng)邊相等得到EC=BF,再利用AAS得到三角形ECG與三角形FBG全等,利用全等三角形對應(yīng)邊相等得到BG=CG,即可得證;(2)(1)中的結(jié)論成立,理由為:由AC=DB,利用等式的性質(zhì)得到AC=BD,再由AE=DF,利用HL得到直角三角形ACE與直角三角形DBF全等,利用全等三角形對應(yīng)邊相等得到EC=BF,再利用AAS得到三角形ECG與三角形FBG全等,利用全等三角形對應(yīng)邊相等得到BG=CG,即可得證.【解答過程】(1)證明:∵CE⊥AD,BF⊥AD,∴∠ACE=∠DBF=90°,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在Rt△ACE和Rt△DBF中,AE=DFAC=DB∴Rt△ACE≌Rt△DBF(HL),∴CE=FB,在△CEG和△BFG中,∠ECG=∠FBG=90°∠EGC=∠BGF∴△CEG≌△BFG(AAS),∴CG=BG,即EF平分線段BC;(2)(1)中結(jié)論成立,理由為:證明:∵CE⊥AD,BF⊥AD,∴∠ACE=∠DBF=90°,∵AB=CD,∴AB﹣BC=CD﹣BC,即AC=DB,在Rt△ACE和Rt△DBF中,AE=DFAC=DB∴Rt△ACE≌Rt△DBF(HL),∴CE=FB,在△CEG和△BFG中,∠ECG=∠FBG=90°∠EGC=∠BGF∴△CEG≌△BFG(AAS),∴CG=BG,即EF平分線段BC.【題型2軸對稱模型】【模型解讀】將原圖形沿著某一條直線折疊后,直線兩邊的部分能夠完全重合,這兩個三角形稱之為軸對稱型全等三角形,此類圖形中要注意期隱含條件,即公共邊或公共角相等.【常見模型】【例2】(2020秋?杭州校級月考)如圖,在△ABC和△BAD中,AC與BD相交于點E,已知AD=BC,另外只能從下面給出的三個條件①∠DAB=∠CBA,②∠D=∠C③∠DBA=∠CAB選擇其中的一個用來證明在△ABC和△BAD全等,這個條件是.(填寫編號),并證明△ABC≌△BAD.【解題思路】選擇條件①,根據(jù)全等三角形的判定定理SAS進行證明即可.【解答過程】解:這個條件是:①,證明如下:在△ABD與△BAC中,BC=AD∠CBA=∠DAB∴△ABC≌△BAD(SAS).【變式21】如圖,AB=AC,BE⊥AC于E,CD⊥AB于D,BE、CD交于點O,求證:OB=OC.【解題思路】證△ABE≌△ACD,推出∠B=∠C,AD=AE,求出BD=CE,證△BDO≌△CEO,根據(jù)全等三角形的性質(zhì)推出即可.【解答過程】證明:∵BE⊥AC,CD⊥AB,∴∠ADC=∠AEB=90°,在△ABE和△ACD中∠A=∠A∠AEB=∠ADC∴△ABE≌△ACD(AAS),∴∠B=∠C,AD=AE,∵AB=AC,∴BD=CE,在△BDO和△CEO中∠DOB=∠EOC∠B=∠C∴△BDO≌△CEO(AAS),∴OB=OC.【變式22】(2020秋?海珠區(qū)校級期中)如圖,PB⊥AB,PC⊥AC,PB=PC,D是AP上一點.求證:∠BDP=∠CDP.【解題思路】求出∠ABP=∠ACP=90°,根據(jù)HL推出Rt△ABP≌Rt△ACP,根據(jù)全等三角形的性質(zhì)得出∠BPD=∠CPD,根據(jù)SAS推出△BPD≌△CPD,即可得出答案.【解答過程】證明:∵PB⊥AB,PC⊥AC,∴∠ABP=∠ACP=90°,∴在Rt△ABP和Rt△ACP中AP=APPB=PC∴Rt△ABP≌Rt△ACP(HL),∴∠BPD=∠CPD,在△BPD和△CPD中PB=PC∠BPD=∠CPD∴△BPD≌△CPD,∴∠BDP=∠CDP.【變式23】如圖,AB=AC,D、E分別是AB、AC的中點,AM⊥CD于M,AN⊥BE干N.求證:AM=AN.【解題思路】利用已知條件先證明△DBC≌△EBC,再證明△AMD≌△ANE,即可解答.【解答過程】解:∵AB=AC,D、E分別是AB、AC的中點,∴AD=BD=AE=EC,∠B=∠C,在△DBC和△EBC中BD=EC∠B=∠C∴△DBC≌△EBC,∴∠BDC=∠BDE,∵∠BDC=∠ADM,∠BEC=∠AEN,∴∠ADM=∠AEN,在△AMD和△ANE中∵∠AMD=∠ANE=90°∴△AMD≌△ANE∴AM=AN.【題型3旋轉(zhuǎn)模型】【模型解讀】將三角形繞著公共頂點旋轉(zhuǎn)一定角度后,兩個三角形能夠完全重合,則稱這兩個三角形為旋轉(zhuǎn)型三角形,識別旋轉(zhuǎn)型三角形時,涉及對頂角相等、等角加(減)公共角的條件.【常見模型】【例3】(2020秋?渝水區(qū)校級期中)如圖,AB=AC,AD=AE,∠BAC=∠DAE.求證:∠ABD=∠ACE.【解題思路】根據(jù)等式的性質(zhì)得出∠BAD=∠CAE,利用SAS證明△ABD與△ACE全等,進而解答即可.【解答過程】證明:∵∠BAC=∠DAE,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,∴∠BAD=∠CAE,在△ABD與△ACE中,AB=AC∠BAD=∠CAE∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE.【變式31】(2020秋?懷寧縣期末)如圖,已知:AD=AB,AE=AC,AD⊥AB,AE⊥AC.猜想線段CD與BE之間的數(shù)量關(guān)系與位置關(guān)系,并證明你的猜想.【解題思路】證明△ACD≌△AEB,根據(jù)全等三角形的性質(zhì)得到CD=BE,∠ADC=∠ABE,根據(jù)三角形內(nèi)角和定理得出∠BFD=∠BAD=90°,證明結(jié)論.【解答過程】解:猜想:CD=BE,CD⊥BE,理由如下:∵AD⊥AB,AE⊥AC,∴∠DAB=∠EAC=90°.∴∠DAB+∠BAC=∠EAC+∠BAC,即∠CAD=∠EAB,在△ACD和△AEB中,AD=AB∠CAD=∠EAB∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∵∠AGD=∠FGB,∴∠BFD=∠BAD=90°,即CD⊥BE.【變式32】(2020秋?合江縣月考)已知△ABC和△ADE均為等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如圖1,點E在BC上,求證:BC=BD+BE;(2)如圖2,點E在CB的延長線上,求證:BC=BD﹣BE.【解題思路】(1)先證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),得出BD=CE,則可得出結(jié)論;(2)證明△DAB≌△EAC(SAS),得出BD=CE,進而得出結(jié)論.【解答過程】(1)證明:∵∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=BE+CE=BD+BE;(2)證明:∵∠BAC=∠DAE,∴∠BAC+∠EAB=∠DAE+∠EAB,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=CE﹣BE=BD﹣BE.【變式33】(2021春?浦東新區(qū)期末)如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)當點D在AC上時,如圖①,線段BD,CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?請證明你的猜想;(2)將圖①中的△ADE繞點A順時針旋轉(zhuǎn)α(0°<α<90°),如圖②,線段BD,CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?請說明理由.【解題思路】(1)延長BD交CE于F,易證△EAC≌△DAB,可得BD=CE,∠ABD=∠ACE,根據(jù)∠AEC+∠ACE=90°,可得∠ABD+∠AEC=90°,即可解題;(2)延長BD交CE于F,易證∠BAD=∠EAC,即可證明△EAC≌△DAB,可得BD=CE,∠ABD=∠ACE,根據(jù)∠ABC+∠ACB=90°,可以求得∠CBF+∠BCF=90°,即可解題.【解答過程】證明:(1)延長BD交CE于F,在△EAC和△DAB中,AE=AD∠EAC=∠DAB∴△EAC≌△DAB(SAS),∴BD=CE,∠ABD=∠ACE,∵∠AEC+∠ACE=90°,∴∠ABD+∠AEC=90°,∴∠BFE=90°,即EC⊥BD;(2)延長BD交CE于F,∵∠BAD+∠CAD=90°,∠CAD+∠EAC=90°,∴∠BAD=∠EAC,∵在△EAC和△DAB中,AD=AE∠BAD=∠EAC∴△EAC≌△DAB(SAS),∴BD=CE,∠ABD=∠ACE,∵∠ABC+∠ACB=90°,∴∠CBF+∠BCF=∠ABC﹣∠ABD+∠ACB+∠ACE=90°,∴∠BFC=90°,即EC⊥BD.【題型4一線三等角模型】【模型解讀】基本圖形如下:此類圖形通常告訴BD⊥DE,AB⊥AC,CE⊥DE,那么一定有∠B=∠CAE.【常見模型】【例4】(2020秋?覃塘區(qū)期中)已知:D,A,E三點都在直線m上,在直線m的同一側(cè)作△ABC,使AB=AC,連接BD,CE.(1)如圖①,若∠BAC=90°,BD⊥m,CE⊥m,求證:△ABD≌△ACE;(2)如圖②,若∠BDA=∠AEC=∠BAC,請判斷BD,CE,DE三條線段之間的數(shù)量關(guān)系,并說明理由.【解題思路】(1)根據(jù)BD⊥直線m,CE⊥直線m得∠BDA=∠CEA=90°,而∠BAC=90°,根據(jù)等角的余角相等得∠CAE=∠ABD,然后根據(jù)“AAS”可判斷△ADB≌△CEA;(2)由∠BDA=∠AEC=∠BAC,就可以求出∠BAD=∠ACE,進而由ASA就可以得出△BAD≌△ACE,就可以得出BD=AE,DA=CE,即可得出結(jié)論.【解答過程】解:(1)證明:如圖①,∵D,A,E三點都在直線m上,∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE,在△ABD和△ACE中,∠ADB=∠AEC∠ABD=∠CAE∴△ABD≌△ACE(AAS);(2)DE=BD+CE.理由是:如圖②,∵∠BDA=∠AEC=∠BAC,∴由三角形內(nèi)角和及平角性質(zhì),得:∠BAD+∠ABD=∠BAD+∠CAE=∠CAE+∠ACE,∴∠ABD=∠CAE,∠BAD=∠ACE,在△ABD和△ACE中,∠ABD=∠CAEAB=AC∴△ABD≌△ACE(ASA),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE.【變式41】(2020春?香坊區(qū)期末)如圖,在△ABC中,點D是邊BC上一點,CD=AB,點E在邊AC上,且AD=DE,∠BAD=∠CDE.(1)如圖1,求證:BD=CE;(2)如圖2,若DE平分∠ADC,在不添加輔助線的情況下,請直接寫出圖中所有與∠ADE相等的角(∠ADE除外).【解題思路】(1)由“SAS”可證△ABD≌△DCE,可得BD=CE;(2)由全等三角形的性質(zhì)可得∠B=∠C,由三角形的外角性質(zhì)和角平分線的性質(zhì)可求解.【解答過程】解:(1)在△ABD和△DCE中,AB=CD∠BAD=∠CDE∴△ABD≌△DCE(SAS),∴BD=CE;(2)∵△ABD≌△DCE,∴∠B=∠C,∵DE平分∠ADC,∴∠ADE=∠CDE=∠BAD,∵∠ADC=∠B+∠BAD=∠ADE+∠CDE,∴∠B=∠ADE=∠BAD=∠EDC=∠C,∴與∠ADE相等的角有∠EDC,∠BAD,∠B,∠C.【變式42】(2020春?歷下區(qū)期中)CD是經(jīng)過∠BCA定點C的一條直線,CA=CB,E、F分別是直線CD上兩點,且∠BEC=∠CFA=∠β.(1)若直線CD經(jīng)過∠BCA內(nèi)部,且E、F在射線CD上,①若∠BCA=90°,∠β=90°,例如圖1,則BECF,EF|BE﹣AF|.(填“>”,“<”,“=”);②若0°<∠BCA<180°,且∠β+∠BCA=180°,例如圖2,①中的兩個結(jié)論還成立嗎?并說明理由;(2)如圖3,若直線CD經(jīng)過∠BCA外部,且∠β=∠BCA,請直接寫出線段EF、BE、AF的數(shù)量關(guān)系(不需要證明).【解題思路】(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根據(jù)AAS證△BCE≌△CAF,推出BE=CF,CE=AF即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根據(jù)AAS證△BCE≌△CAF,推出BE=CF,CE=AF即可;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根據(jù)AAS證△BCE≌△CAF,推出BE=CF,CE=AF即可.【解答過程】解:(1)①如圖1,E點在F點的左側(cè),∵BE⊥CD,AF⊥CD,∠ACB=90°,∴∠BEC=∠AFC=90°,∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,∴∠CBE=∠ACF,在△BCE和△CAF中,∠EBC=∠ACF∠BEC=∠AFC∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,當E在F的右側(cè)時,同理可證EF=AF﹣BE,∴EF=|BE﹣AF|;故答案為=,=.②:①中兩個結(jié)論仍然成立;證明:如圖2,∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,∴∠CBE=∠ACF,在△BCE和△CAF中,∠EBC=∠ACF∠BEC=∠AFC∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,當E在F的右側(cè)時,如圖3,同理可證EF=AF﹣BE,∴EF=|BE﹣AF|;(2)EF=BE+AF.理由是:如圖4,∵∠BEC=∠CFA=∠a,∠a=∠BCA,又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,∴∠EBC+∠BCE=∠BCE+∠ACF,∴∠EBC=∠ACF,在△BEC和△CFA中,∠EBC=∠ACF∠BEC=∠AFC∴△BEC≌△CFA(AAS),∴AF=CE,BE=CF,∵EF=CE+CF,∴EF=BE+AF.【變式43】(2020秋?余杭區(qū)月考)如圖①,點B、C在∠MAN的邊AM、AN上,點E,F(xiàn)在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF.應(yīng)用:如圖②,在△ABC中,AB=AC,AB>BC,點D在邊BC上,且CD=2BD,點E,F(xiàn)在線段AD上.∠1=∠2=∠BAC,若△ABC的面積為15,求△ABE與△CDF的面積之和.【解題思路】(1)由“ASA”可證△ABE≌△CAF;(2)由“ASA”可證△ABE≌△CAF,由全等三角形的性質(zhì)可得S△ABE=S△CAF,由三角形的面積關(guān)系可求解.【解答過程】證明:(1)∵∠1=∠2=∠BAC,且∠1=∠BAE+∠ABE,∠2=∠FAC+∠FCA,∠BAC=∠BAE+∠FAC,∴∠BAE=∠FCA,∠ABE=∠FAC,且AB=AC,∴△ABE≌△CAF(ASA)(2)∵∠1=∠2=∠BAC,且∠1=∠BAE+∠ABE,∠2=∠FAC+∠FCA,∠BAC=∠BAE+∠FAC,∴∠BAE=∠FCA,∠ABE=∠FAC,且AB=AC,∴△ABE≌△CAF(ASA)∴S△ABE=S△CAF,∵CD=2BD,△ABC的面積為15,∴S△ACD=10=S△ABE+S△CDF.【點評】本題考查了全等三角形的判定和性質(zhì),證明△ABE≌△CAF是本題的關(guān)鍵.【題型5倍長中線模型】【模型解讀】中線是三角形中的重要線段之一,在利用中線解決幾何問題時,常常采用“倍長中線法”添加輔助線.所謂倍長中線法,就是將三角形的中線延長一倍,以便構(gòu)造出全等三角形,從而運用全等三角形的有關(guān)知識來解決問題的方法.【常見模型】【例5】(2020秋?津南區(qū)校級期中)已知:在△ABC中,AD是BC邊上的中線,E是AD上一點,且BE=AC,延長BE交AC于F,求證:AF=EF.【解題思路】根據(jù)點D是BC的中點,延長AD到點G,得到△ADC≌△GDB,利用全等三角形的對應(yīng)角相等,對應(yīng)邊相等進行等量代換,得到△AEF中的兩個角相等,然后用等角對等邊證明AE等于EF.【解答過程】證明:如圖,延長AD到點G,使得AD=DG,連接BG.∵AD是BC邊上的中線(已知),∴DC=DB,在△ADC和△GDB中,AD=DG∠ADC=∠GDB(∴△ADC≌△GDB(SAS),∴∠CAD=∠G,BG=AC又∵BE=AC,∴BE=BG,∴∠BED=∠G,∵∠BED=∠AEF,∴∠AEF=∠CAD,即:∠AEF=∠FAE,∴AF=EF.【變式51】(2020春?大慶期末)如圖.AB=AE,AB⊥AE,AD=AC.AD⊥AC,點M為BC的中點,求證:DE=2AM.【解題思路】延長AM至N,使MN=AM,證△AMC≌△NMB,推出AC=BN=AD,求出∠EAD=∠ABN,證△EAD≌△ABN即可.【解答過程】證明:延長AM至N,使MN=AM,連接BN,∵點M為BC的中點,∴CM=BM,在△AMC和△NMB中AM=MN∠AMC=∠NMB∴△AMC≌△NMB(SAS),∴AC=BN,∠C=∠NBM,∵AB⊥AE,AD⊥AC,∴∠EAB=∠DAC=90°,∴∠EAD+∠BAC=180°,∴∠ABN=∠ABC+∠C=180°﹣∠BAC=∠EAD,在△EAD和△ABN中∵AE=AB∠EAD=∠ABN∴△ABN≌△EAD(SAS),∴DE=AN=2AM.【變式52】(2020秋?西城區(qū)校級期中)如圖,在△ABC中,AB>AC,E為BC邊的中點,AD為∠BAC的平分線,過E作AD的平行線,交AB于F,交CA的延長線于G.求證:BF=CG.【解題思路】延長FE至Q,使EQ=EF,連接CQ,根據(jù)SAS證△BEF≌△CEQ,推出BF=CQ,∠BFE=∠Q,根據(jù)平行線性質(zhì)和角平分線性質(zhì)推出∠G=∠GFA=∠BFE,推出∠G=∠Q,推出CQ=CG即可.【解答過程】證明:延長FE至Q,使EQ=EF,連接CQ,∵E為BC邊的中點,∴BE=CE,∵在△BEF和△CEQ中BE=CE∠BEF=∠CEQ∴△BEF≌△CEQ,∴BF=CQ,∠BFE=∠Q,∵AD平分∠BAC,∴∠CAD=∠BAD,∵EF∥AD,∴∠CAD=∠G,∠BAD=∠GFA,∴∠G=∠GFA,∴∠GFA=∠BFE,∵∠BFE=∠Q(已證),∴∠G=∠Q,∴CQ=CG,∵CQ=BF,∴BF=CG.【變式53】(2020秋?安陸市期中)八年級一班數(shù)學興趣小組在一次活動中進行了探究試驗活動,請你和他們一起活動吧.【探究與發(fā)現(xiàn)】(1)如圖1,AD是△ABC的中線,延長AD至點E,使ED=AD,連接BE,寫出圖中全等的兩個三角形【理解與應(yīng)用】(2)填空:如圖2,EP是△DEF的中線,若EF=5,DE=3,設(shè)EP=x,則x的取值范圍是.(3)已知:如圖3,AD是△ABC的中線,∠BAC=∠ACB,點Q在BC的延長線上,QC=BC,求證:AQ=2AD.【解題思路】(1)根據(jù)全等三角形的判定即可得到結(jié)論;(2)延長EP至點Q,使PQ=PE,連接FQ,根據(jù)全等三角形的性質(zhì)得到FQ=DE=3,根據(jù)三角形的三邊關(guān)系即可得到結(jié)論;(3)延長AD到M,使MD=AD,連接BM,于是得到AM=2AD由已知條件得到BD=CD,根據(jù)全等三角形的性質(zhì)得到BM=CA,∠M=∠CAD,于是得到∠BAC=∠BAM+∠CAD=∠BAM+∠M,推出△ACQ≌△MBA,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.【解答過程】(1)證明:在△ADC與△EDB中,AD=DE∠ADC=∠BDE∴△ADC≌△EDB;故答案為:△ADC≌△EDB;(2)解:如圖2,延長EP至點Q,使PQ=PE,連接FQ,在△PDE與△PQF中,PE=PQ∠EPD=∠QPF∴△PEP≌△QFP,∴FQ=DE=3,在△EFQ中,EF﹣FQ<QE<EF+FQ,即5﹣3<2x<5+3,∴x的取值范圍是1<x<4;故答案為:1<x<4;(3)證明:如圖3,延長AD到M,使MD=AD,連接BM,∴AM=2AD,∵AD是△ABC的中線,∴BD=CD,在△BMD與△CAD中,MD=AD∠BDA=∠CDA∴△BMD≌△CAD,∴BM=CA,∠M=∠CAD,∴∠BAC=∠BAM+∠CAD=∠BAM+∠M,∵∠ACB=∠Q+∠CAQ,AB=BC,∵∠ACQ=180°﹣(∠Q+∠CAQ),∠MBA=180°﹣(∠BAM+∠M),∴∠ACQ=∠MBA,∵QC=BC,∴QC=AB,在△ACQ與△MBA中,BM=CA∠ACQ=∠MBA∴△ACQ≌△MBA,∴AQ=AM=2AD.【題型6截長補短模型】【模型解讀】截長補短的方法適用于求證線段的和差倍分關(guān)系.截長,指在長線段中截取一段等于已知線段;補短,指將短線段延長,延長部分等于已知線段.該類題目中常出現(xiàn)等腰三角形、角平分線等關(guān)鍵詞句,可以采用截長補短法構(gòu)造全等三角形來完成證明過程【例6】(2020秋?涪城區(qū)校級月考)如圖,AB∥CD,E為AD上一點,且BE、CE分別平分∠ABC,∠BCD.求證:AE=DE.【解題思路】作BE的延長線交CD的延長線于F,結(jié)合條件可證明△FCE≌△BCE,得出EF=BE,BC=FC,進一步可得出△AEB≌△DEF,可得出結(jié)論.【解答過程】證明:如圖,延長BE交CD的延長線于F,∵CE是∠BCD的平分線,∴∠BCE=∠FCE,∵AB∥CD,∴∠F=∠FBA,∵BE是∠ABC的平分線,∴∠ABF=∠FBC,∴∠FBC=∠F.在△FCE和△BCE中∠F=∠FBC∠FCE=∠BCE∴△FCE≌△BCE(AAS),∴EF=BE,BC=FC,在△AEB和△DEF中,∠AEB=∠DEFBE=EF∴△AEB≌△DEF(ASA),∴AE=ED.【變式61】(2020秋?蘄春縣期中)如圖,AB∥CD,BE平分∠ABC,CE平分∠BCD,若E在AD上.求證:(1)BE⊥CE;(2)BC=AB+CD.【解題思路】(1)利用平行線的性質(zhì)證明∠2+∠3=90°即可解決問題.(2)在BC上取點F,使BF=BA,連接EF.利用全等三角形的性質(zhì)證明CF=CD即可解決問題.【解答過程】證明:如圖所示:(1)∵BE、CE分別是∠ABC和∠BCD的平分線,∴∠1=∠2,∠3=∠4,又∵AB∥CD,∴∠1+∠2+∠3+∠4=180°,∴∠2+∠3=90°,∴∠BEC=90°,∴BE⊥CE.(2)在BC上取點F,使BF=BA,連接EF.在△ABE和△FBE中,AB=FB∠1=∠2∴△ABE≌△FBE(SAS),∴∠A=∠5.∵AB∥CD,∴∠A+∠D=180°,∴∠5+∠D=180,∵∠5+∠6=180°,∴∠6=∠D,在△CDE和△CFE中,∠6=∠D∠3=∠4∴△CDE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水資源管理領(lǐng)域技術(shù)創(chuàng)新合作項目投資合同
- 電子支付安全保護市場推廣合同
- 文化創(chuàng)意產(chǎn)業(yè)授權(quán)合同
- 跨境貿(mào)易安全合作風險免責協(xié)議
- 物流供應(yīng)鏈優(yōu)化合作合同
- 新能源儲能技術(shù)應(yīng)用合同
- 2024年軟件技術(shù)開發(fā)合作協(xié)議
- 新型建筑材料生產(chǎn)技術(shù)轉(zhuǎn)讓協(xié)議
- 微信公眾號運營策劃服務(wù)協(xié)議
- 2025年度舞蹈表演藝術(shù)團舞蹈教師兼職合同
- 健康管理師操作技能考試題庫(含答案)
- 2018年湖北省武漢市中考數(shù)學試卷含解析
- 農(nóng)化分析土壤P分析
- GB/T 18476-2001流體輸送用聚烯烴管材耐裂紋擴展的測定切口管材裂紋慢速增長的試驗方法(切口試驗)
- GA 1551.5-2019石油石化系統(tǒng)治安反恐防范要求第5部分:運輸企業(yè)
- 拘留所教育課件02
- 沖壓生產(chǎn)的品質(zhì)保障
- 《腎臟的結(jié)構(gòu)和功能》課件
- 2023年湖南聯(lián)通校園招聘筆試題庫及答案解析
- 上海市徐匯區(qū)、金山區(qū)、松江區(qū)2023屆高一上數(shù)學期末統(tǒng)考試題含解析
- 護士事業(yè)單位工作人員年度考核登記表
評論
0/150
提交評論