版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省重點高中協(xié)作體2025屆高一數(shù)學第一學期期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)關(guān)于直線對稱,且當時,恒成立,則滿足的x的取值范圍是()A. B.C. D.2.設,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件3.已知函數(shù),那么的值為()A.25 B.16C.9 D.34.已知函數(shù),,則的零點所在的區(qū)間是A. B.C. D.5.已知,并且是終邊上一點,那么的值等于A. B.C. D.6.在平面直角坐標系中,以為圓心的圓與軸和軸分別相切于兩點,點分別在線段上,若,與圓相切,則的最小值為A. B.C. D.7.函數(shù)的部分圖象如圖所示,將的圖象向右平移個單位長度后得到的函數(shù)圖象關(guān)于軸對稱,則的最小值為()A. B.C. D.8.已知,則()A. B.C. D.9.已知,則的值為()A.-4 B.C. D.410.甲、乙兩人在一次賽跑中,從同一地點出發(fā),路程s與時間t的函數(shù)關(guān)系如圖所示,則下列說法正確的是()A.甲比乙先出發(fā) B.乙比甲跑的路程多C.甲比乙先到達終點 D.甲、乙兩人的速度相同二、填空題:本大題共6小題,每小題5分,共30分。11.把物體放在冷空氣中冷卻,如果物體原來的溫度是θ1,空氣的溫度是θ0℃,那么t后物體的溫度θ(單位:)可由公式(k為正常數(shù))求得.若,將55的物體放在15的空氣中冷卻,則物體冷卻到35所需要的時間為___________.12.已知實數(shù)滿足,則________13.若在內(nèi)有兩個不同的實數(shù)值滿足等式,則實數(shù)k的取值范圍是_______14.定義為中的最大值,函數(shù)的最小值為,如果函數(shù)在上單調(diào)遞減,則實數(shù)的范圍為__________15.已知,若,則__________.16.現(xiàn)采用隨機模擬的方法估計某運動員射擊4次,至少擊中3次的概率:先由計算器給出0到9之間取整數(shù)值的隨機數(shù),指定0,1表示沒有擊中目標,2,3,4,5,6,7,8,9表示擊中目標,以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):75270293714098570347437386366947141746980371623326168045601136619597742476104281根據(jù)以上數(shù)據(jù)估計該射擊運動員射擊4次至少擊中3次的概率為__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知角的終邊經(jīng)過點.(1)求的值;(2)求的值.18.設直線l的方程為.(1)若l在兩坐標軸上的截距相等,求直線l的方程(2)若l在兩坐標軸上的截距互為相反數(shù),求a.19.定義在上的奇函數(shù),已知當時,求實數(shù)a的值;求在上解析式;若存在時,使不等式成立,求實數(shù)m的取值范圍20.已知集合,.(1)若,求;(2)若,求實數(shù)的取值范圍.21.已知扇形的圓心角是,半徑為,弧長為.(1)若,,求扇形的弧長;(2)若扇形的周長為,當扇形的圓心角為多少弧度時,這個扇形的面積最大,并求出此時扇形面積的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)題意,得到函數(shù)為偶函數(shù),且在為單調(diào)遞減函數(shù),則在為單調(diào)遞增函數(shù),把不等式,轉(zhuǎn)化為,即可求解.【詳解】由題意,函數(shù)關(guān)于直線對稱,所以函數(shù)為偶函數(shù),又由當時,恒成立,可得函數(shù)在為單調(diào)遞減函數(shù),則在為單調(diào)遞增函數(shù),因為,可得,即或,解得或,即不等式的解集為,即滿足的x的取值范圍是.故選:B.2、D【解析】若,則,故不充分;若,則,而,故不必要,故選D.考點:本小題主要考查不等式的性質(zhì),熟練不等式的性質(zhì)是解答好本類題目的關(guān)鍵.3、C【解析】根據(jù)分段函數(shù)解析式求得.【詳解】因為,所以.故選:C4、C【解析】由題意結(jié)合零點存在定理確定的零點所在的區(qū)間即可.【詳解】由題意可知函數(shù)在上單調(diào)遞減,且函數(shù)為連續(xù)函數(shù),注意到,,,,結(jié)合函數(shù)零點存在定理可得的零點所在的區(qū)間是.本題選擇C選項.【點睛】應用函數(shù)零點存在定理需要注意:一是嚴格把握零點存在性定理的條件;二是連續(xù)函數(shù)在一個區(qū)間的端點處函數(shù)值異號是這個函數(shù)在這個區(qū)間上存在零點的充分條件,而不是必要條件;三是函數(shù)f(x)在(a,b)上單調(diào)且f(a)f(b)<0,則f(x)在(a,b)上只有一個零點.5、A【解析】由題意得:,選A.6、D【解析】因為為圓心的圓與軸和軸分別相切于兩點,點分別在線段上,若,與圓相切,設切點為,所以,設,則,,故選D.考點:1、圓的幾何性質(zhì);2、數(shù)形結(jié)合思想及三角函數(shù)求最值【方法點睛】本題主要考查圓的幾何性質(zhì)、數(shù)形結(jié)合思想及三角函數(shù)求最值,屬于難題.求最值的常見方法有①配方法:若函數(shù)為一元二次函數(shù),常采用配方法求函數(shù)求值域,其關(guān)鍵在于正確化成完全平方式,并且一定要先確定其定義域;②三角函數(shù)法:將問題轉(zhuǎn)化為三角函數(shù),利用三角函數(shù)的有界性求最值;③不等式法:借助于基本不等式求函數(shù)的值域,用不等式法求值域時,要注意基本不等式的使用條件“一正、二定、三相等”;④單調(diào)性法:首先確定函數(shù)的定義域,然后準確地找出其單調(diào)區(qū)間,最后再根據(jù)其單調(diào)性求凼數(shù)的值域,⑤圖像法:畫出函數(shù)圖像,根據(jù)圖像的最高和最低點求最值,本題主要應用方法②求的最小值的7、C【解析】觀察圖象可得函數(shù)的最大值,最小值,周期,由此可求函數(shù)的解析式,根據(jù)三角函數(shù)變換結(jié)論,求出平移后的函數(shù)解析式,根據(jù)平移后函數(shù)圖象關(guān)于軸對稱,列方程求的值,由此確定其最小值.【詳解】根據(jù)函數(shù)的部分圖象,可得,,∴因,可得,又,求得,故將的圖象向右平移個單位長度后得到的函數(shù)的圖象,因為的圖象關(guān)于直線軸對稱,故,即,故的最小值為,故選:C8、C【解析】先對兩邊平方,構(gòu)造齊次式進而求出或,再用正切的二倍角公式即可求解.【詳解】解:對兩邊平方得,進一步整理可得,解得或,于是故選:C【點睛】本題考查同角三角函數(shù)關(guān)系和正切的二倍角公式,考查運算能力,是中檔題.9、A【解析】由題,解得.故選A.10、C【解析】結(jié)合圖像逐項求解即可.【詳解】結(jié)合已知條件可知,甲乙同時出發(fā)且跑的路程都為,故AB錯誤;且當甲乙兩人跑的路程為時,甲所用時間比乙少,故甲先到達終點且甲的速度較大,故C正確,D錯誤.故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】將數(shù)據(jù),,,代入公式,得到,解指數(shù)方程,即得解【詳解】將,,,代入得,所以,,所以,即.故答案為:212、4【解析】方程的根與方程的根可以轉(zhuǎn)化為函數(shù)與函數(shù)交點的橫坐標和函數(shù)與函數(shù)交點的橫坐標,再根據(jù)與互為反函數(shù),關(guān)于對稱,即可求出答案.【詳解】,,令,,此方程的解即為函數(shù)與函數(shù)交點的橫坐標,設為,如下圖所示;,此方程的解即為函數(shù)與函數(shù)交點的橫坐標,設為,如下圖所示,與互反函數(shù),關(guān)于對稱,聯(lián)立方程,解得,即,.故答案為:4.13、【解析】討論函數(shù)在的單調(diào)性即可得解.【詳解】函數(shù),時,單調(diào)遞增,時,單調(diào)遞減,,,,所以在內(nèi)有兩個不同的實數(shù)值滿足等式,則,所以.故答案為:14、【解析】根據(jù)題意,將函數(shù)寫成分段函數(shù)的形式,分析可得其最小值,即可得的值,進而可得,由減函數(shù)的定義可得,解得的范圍,即可得答案【詳解】根據(jù)題意,,則,根據(jù)單調(diào)性可得先減后增,所以當時,取得最小值2,則有,則,因為為減函數(shù),必有,解可得:,即m的取值范圍為;故答案為.【點睛】本題考查函數(shù)單調(diào)性、函數(shù)最值的計算,關(guān)鍵是求出c的值.15、【解析】由已知先求得,再求得,代入可得所需求的函數(shù)值.【詳解】由已知得,即,所以,而,故答案為.【點睛】本題考查函數(shù)求值中的給值求值問題,關(guān)鍵在于由已知的函數(shù)值求得其數(shù)量關(guān)系,代入所需求的函數(shù)解析式中,可得其值,屬于基礎(chǔ)題.16、【解析】根據(jù)數(shù)據(jù)統(tǒng)計擊中目標的次數(shù),再用古典概型概率公式求解.【詳解】由數(shù)據(jù)得射擊4次至少擊中3次的次數(shù)有15,所以射擊4次至少擊中3次的概率為.故答案為:【點睛】本題考查古典概型概率公式,考查基本分析求解能力,屬基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】因為角終邊經(jīng)過點,設,,則,所以,,.(1)即得解;(2)化簡即可得解.試題解析:因為角終邊經(jīng)過點,設,,則,所以,,.(1)(2)18、(1)3x+y=0或x+y+2=0.(2)a=2或a=-2【解析】(1)直線在兩坐標軸上的截距相等,有兩種情況:截距為0和截距不為0,分別求出兩種情況下的a的值,即得直線l的方程;(2)直線在兩坐標軸上的截距互為相反數(shù),由(1)可知有,解方程可得a?!驹斀狻浚?)當直線過原點時,該直線在x軸和y軸上截距為零,∴a=2,方程即為,當直線不經(jīng)過原點時,截距存在且均不為0.∴,即a+1=1.∴a=0,方程即為x+y+2=0.綜上,直線l的方程為3x+y=0或x+y+2=0.(2)由,得a-2=0或a+1=-1,∴a=2或a=-2.【點睛】第一個問中,直線在兩坐標軸上的截距相等,注意不要忽略截距為0的情況。19、(1);(2);(3).【解析】根據(jù)題意,由函數(shù)奇偶性的性質(zhì)可得,解可得的值,驗證即可得答案;當時,,求出的解析式,結(jié)合函數(shù)的奇偶性分析可得答案;根據(jù)題意,若存在,使得成立,即在有解,變形可得在有解設,分析的單調(diào)性可得的最大值,從而可得結(jié)果【詳解】根據(jù)題意,是定義在上的奇函數(shù),則,得經(jīng)檢驗滿足題意;故;根據(jù)題意,當時,,當時,,又是奇函數(shù),則綜上,當時,;根據(jù)題意,若存在,使得成立,即在有解,即在有解又由,則在有解設,分析可得在上單調(diào)遞減,又由時,,故即實數(shù)m的取值范圍是【點睛】本題考查函數(shù)的奇偶性的應用,以及指數(shù)函數(shù)單調(diào)性的應用,屬于綜合題20、(1);(2).【解析】(1)根據(jù)并集的概念運算可得結(jié)果;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度法律服務機構(gòu)兼職律師服務合同3篇
- 2025年度公司簽約帶貨主播虛擬偶像合作合同3篇
- 二零二五年度養(yǎng)殖場養(yǎng)殖場養(yǎng)殖技術(shù)交流與合作合同3篇
- 2025年度建筑工程施工現(xiàn)場管理三方協(xié)議3篇
- 二零二五年度全新碼頭租賃合同及港口貨物裝卸服務協(xié)議3篇
- 2025年度XX教育機構(gòu)二零二五年度教育貸款協(xié)議3篇
- 2025年度大學畢業(yè)生就業(yè)就業(yè)能力評估與培訓合同3篇
- 2025年度高新技術(shù)產(chǎn)業(yè)競業(yè)禁止勞動合同范本解析3篇
- 2025年度高效農(nóng)業(yè)機械買賣合同協(xié)議書模板3篇
- 2025年度寵物店專業(yè)連鎖品牌形象設計與授權(quán)合同3篇
- 銀行貸款保證合同范本
- 《汽車膠粘劑》課件
- 2024腦血管病指南
- 企業(yè)三年營銷規(guī)劃
- 2024年社區(qū)工作者考試試題庫
- 工廠設備工程師年終總結(jié)
- 福建省廈門市2024-2025學年新人教版九年級語文上學期期末質(zhì)量檢測試題
- 辦公室行政培訓
- (完整版)python學習課件024600
- 湖南省岳陽市2023-2024學年高一上學期1月期末質(zhì)量監(jiān)測試題+物理 含答案
- 圓柱的表面積課件
評論
0/150
提交評論