版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
甘肅省靖遠(yuǎn)二中2025屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),那么的值為()A. B.C. D.2.函數(shù)的導(dǎo)數(shù)為()A.B.CD.3.?dāng)?shù)列中,,,.當(dāng)時,則n等于()A.2016 B.2017C.2018 D.20194.已知等比數(shù)列中,,前三項之和,則公比的值為()A1 B.C.1或 D.或5.直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.相交或相切6.如圖,在四棱錐中,平面,底面是正方形,,則下列數(shù)量積最大的是()A. B.C. D.7.下列命題中正確的是()A.拋物線的焦點坐標(biāo)為B.拋物線的準(zhǔn)線方程為x=?1C.拋物線的圖象關(guān)于x軸對稱D.拋物線的圖象關(guān)于y軸對稱8.在平面直角坐標(biāo)系中,已知橢圓的上、下頂點分別為、,左頂點為,左焦點為,若直線與直線互相垂直,則橢圓的離心率為A. B.C. D.9.已知直線與直線垂直,則實數(shù)()A.10 B.C.5 D.10.兩圓與的公切線有()A.1條 B.2條C.3條 D.4條11.德國數(shù)學(xué)家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進(jìn)微積分概念.在研究切線時認(rèn)識到,求曲線的切線的斜率依賴于縱坐標(biāo)的差值和橫坐標(biāo)的差值,以及當(dāng)此差值變成無限小時它們的比值,這也正是導(dǎo)數(shù)的幾何意義.設(shè)是函數(shù)f(x)的導(dǎo)函數(shù),若,對,且.總有,則下列選項正確的是()A. B.C. D.12.(2016新課標(biāo)全國Ⅱ理科)已知F1,F(xiàn)2是雙曲線E:的左,右焦點,點M在E上,MF1與軸垂直,sin,則E的離心率為A. B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知空間向量,且,則___________.14.已知橢圓和雙曲線有相同的焦點和,設(shè)橢圓和雙曲線的離心率分別為,,為兩曲線的一個公共點,且(為坐標(biāo)原點).若,則的取值范圍是______15.若雙曲線的漸近線方程為,則該雙曲線的離心率為___________;若,則雙曲線的右焦點到漸近線的距離為__________.16.已知向量,且,則實數(shù)________________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,平面平面,且,(1)求證:;(2)求直線與所成角的余弦值18.(12分)在△ABC中,角A,B,C所對的邊分別a,b,c.已知2bcosB=ccosA+acosC(1)求B;(2)若a=2,,設(shè)D為CB延長線上一點,且AD⊥AC,求線段BD的長19.(12分)已知函數(shù)(1)當(dāng)時,求的單調(diào)遞減區(qū)間;(2)若關(guān)于的方程恰有兩個不等實根,求實數(shù)的取值范圍20.(12分)在平面直角坐標(biāo)系中,已知橢圓的焦點為,且過點,橢圓的上、下頂點分別為,右頂點為,直線過點且垂直于軸(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若點在橢圓上(且在第一象限),直線與交于點,直線與軸交于點,試問:是否為定值?若是,請求出定值;若不是,請說明理由21.(12分)已知等比數(shù)列滿足,(1)求數(shù)列通項公式;(2)記,求數(shù)列的前n項和22.(10分)在平面直角坐標(biāo)系中,為坐標(biāo)原點,曲線上點都在軸及其右側(cè),且曲線上的任一點到軸的距離比它到圓的圓心的距離小1(1)求曲線的方程;(2)已知過點的直線交曲線于點,若,求面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】直接求導(dǎo),代入計算即可.【詳解】,故.故選:D.2、B【解析】由導(dǎo)數(shù)運算法則可求出.【詳解】,.故選:B.3、B【解析】根據(jù)已知條件用逐差法求得的通項公式,再根據(jù)裂項求和法求得,代值計算即可.【詳解】因為,,則,即,則,故,又,即,解得.故選:B.4、C【解析】根據(jù)條件列關(guān)于首項與公比的方程組,即可解得公比,注意等比數(shù)列求和公式使用條件.【詳解】等比數(shù)列中,,前三項之和,若,,,符合題意;若,則,解得,即公比的值為1或,故選:C【點睛】本題考查等比數(shù)列求和公式以及基本量計算,考查基本分析求解能力,屬基礎(chǔ)題.5、A【解析】由直線恒過定點,且定點圓內(nèi),從而即可判斷直線與圓相交.【詳解】解:因為直線恒過定點,而,所以定點在圓內(nèi),所以直線與圓相交,故選:A.6、B【解析】設(shè),根據(jù)線面垂直的性質(zhì)得,,,,根據(jù)向量數(shù)量積的定義逐一計算,比較可得答案.【詳解】解:設(shè),因為平面,所以,,,,又底面是正方形,所以,,對于A,;對于B,;對于C,;對于D,,所以數(shù)量積最大的是,故選:B.7、C【解析】根據(jù)拋物線的性質(zhì)逐項分析可得答案.【詳解】拋物線的焦點坐標(biāo)為,故A錯誤;拋物線的準(zhǔn)線方程為,故B錯誤;拋物線的圖象關(guān)于x軸對稱,故C正確,D錯誤;故選:C.8、C【解析】依題意,直線與直線互相垂直,,,故選9、B【解析】根據(jù)兩直線垂直,列出方程,即可求解.【詳解】由題意,直線與直線垂直,可得,解得.故選:B.10、D【解析】求得圓心坐標(biāo)分別為,半徑分別為,根據(jù)圓圓的位置關(guān)系的判定方法,得出兩圓的位置關(guān)系,即可求解.【詳解】由題意,圓與圓,可得圓心坐標(biāo)分別為,半徑分別為,則,所以,可得圓外離,所以兩圓共有4條切線.故選:D.11、C【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進(jìn)而判斷選項.【詳解】由,得在上單調(diào)遞增,因為,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點與點連線的斜率,由圖可知,所以C正確,同理,由圖可知,故D不正確.故選:C12、A【解析】由已知可得,故選A.考點:1、雙曲線及其方程;2、雙曲線的離心率.【方法點晴】本題考查雙曲線及其方程、雙曲線的離心率.,涉及方程思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力,綜合性較強(qiáng),屬于較難題型.由已知可得,利用雙曲線的定義和雙曲線的通徑公式,可以降低計算量,提高解題速度.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)空間向量共線的坐標(biāo)表示可得出關(guān)于的等式,求出的值即可.【詳解】由已知可得,解得.故答案為:.14、【解析】設(shè)出半焦距c,用表示出橢圓的長半軸長、雙曲線的實半軸長,由可得為直角三角形,由此建立關(guān)系即可計算作答,【詳解】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,它們的半焦距為c,于是得,,由橢圓及雙曲線的對稱性知,不妨令焦點和在x軸上,點P在y軸右側(cè),由橢圓及雙曲線定義得:,解得,,因,即,而O是線段的中點,因此有,則有,即,整理得:,從而有,即有,又,則有,即,解得,所以的取值范圍是.故答案為:【點睛】方法點睛:求解橢圓或雙曲線的離心率的三種方法:①定義法:通過已知條件列出方程組,求得值,根據(jù)離心率的定義求解離心率;②齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;③特殊值法:通過取特殊值或特殊位置,求出離心率.15、①.②.3【解析】由漸近線方程知,結(jié)合雙曲線參數(shù)關(guān)系及離心率的定義求雙曲線的離心率,由已知可得右焦點為,應(yīng)用點線距離公式求距離.【詳解】由題設(shè),,則,當(dāng)時,,則雙曲線為,故右焦點為,所以右焦點到漸近線的距離為.故答案為:,3.16、【解析】,利用向量的數(shù)量積的坐標(biāo)運算即可.【詳解】,則,解得故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)過點作交的延長線于點,連接,由,,證出平面,即可證出.(2)以為原點,的方向分別為軸正方向,建立空間直角坐標(biāo)系,寫出相應(yīng)點的坐標(biāo),利用,即可得到答案.【小問1詳解】過點作交的延長線于點,連接,因為,所以,又因為,所以,所以,即,.因為,所以平面,因為平面,所以【小問2詳解】因為平面平面,平面平面,所以平面,以為原點,的方向分別為軸正方向,建立如圖所示的空間直角坐標(biāo)系,則,可得,因為,所以直線與所成角的余弦值為18、(1)(2)【解析】(1)利用正弦定理化簡已知條件,求得,由此求得.(2)利用正弦定理求得,由列方程來求得.【小問1詳解】,由正弦定理得,因為,所以,.【小問2詳解】由(1)知,,由正弦定理:得,,或(舍去),,,所以由得,,19、(1);(2)【解析】(1)求出導(dǎo)數(shù),令,得出變化情況表,即可得出單調(diào)區(qū)間;(2)分離參數(shù)得,構(gòu)造函數(shù),利用導(dǎo)數(shù)討論單調(diào)性,根據(jù)與恰有兩個不同交點即可得出.【詳解】(1)當(dāng)時,函數(shù),則令,得,,當(dāng)x變化時,的變化情況如下表:1+00+↗極大值↘極小值↗∴在上單調(diào)遞減(2)依題意,即.則令,則當(dāng)時,,故單調(diào)遞增,且;當(dāng)時,,故單調(diào)遞減,且∴函數(shù)在處取得最大值故要使與恰有兩個不同的交點,只需∴實數(shù)a的取值范圍是【點睛】關(guān)鍵點睛:本題考查根據(jù)方程根的個數(shù)求參數(shù),解題的關(guān)鍵是參數(shù)分離,構(gòu)造函數(shù)利用導(dǎo)數(shù)討論單調(diào)性,根據(jù)函數(shù)交點個數(shù)判斷.20、(1)(2)為定值,該定值為2【解析】(1)先根據(jù)焦點形式設(shè)出橢圓方程和焦距,根據(jù)橢圓經(jīng)過和半焦距為3易得橢圓的標(biāo)準(zhǔn)方程;(2)設(shè),分別表示出直線方程,進(jìn)而求得點的縱坐標(biāo),點橫坐標(biāo),即可表示出,即可求得答案【小問1詳解】由焦點坐標(biāo)可知,橢圓的焦點在軸上,所以設(shè)橢圓:,焦距為,因為橢圓經(jīng)過點,焦點為所以,,解得,所以橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】設(shè),由橢圓的方程可知,因為,則直線,由已知得,直線斜率均存在,則直線,令得,直線,令得,因為點在第一象限,所以,,則,又因為,即,所以所以為定值,該定值為2.21、(1)(2)【解析】(1)通過基本量列方程組可得;(2)由裂項相消法可解【小問1詳解】由題意得解得,所以數(shù)列的通項公式為【小問2詳解】由(1)知,則所以22、(1)(2)【解析】(1)由題意直接列或根據(jù)拋物線的定義求軌跡方程(2)待定系數(shù)法設(shè)直線方程,聯(lián)立直線與拋物線方程,根據(jù)拋物線的定義,利用韋達(dá)定理解出直線方程,再求面積【小問1詳解】解法1:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 自制水囊在剖宮產(chǎn)宮縮乏力出血中的臨床應(yīng)用
- 應(yīng)急響應(yīng)的統(tǒng)一指揮
- 二零二五年度道路設(shè)施更新改造合同3篇
- 二零二五年度個人鄉(xiāng)村旅游消費貸款合同示范文本2篇
- 二零二五年度屋頂防水隔熱節(jié)能改造合同4篇
- 2025年度新能源儲能系統(tǒng)采購與安裝合同范本3篇
- 2025版高層建筑消防系統(tǒng)改造合同協(xié)議書3篇
- 二零二五年度個人股權(quán)代持與公司解散合同3篇
- 不良反應(yīng)上報流程
- 二零二五年度大學(xué)生創(chuàng)業(yè)項目融資借款合同
- 2025屆安徽省皖南八校聯(lián)盟高二物理第一學(xué)期期末統(tǒng)考試題含解析
- 第六章-主成分分析法
- 2024簡單的租房合同樣本下載
- 中考數(shù)學(xué)計算題練習(xí)100道(2024年中考真題)
- 新人教版五年級上冊數(shù)學(xué)應(yīng)用題大全及答案
- 【家庭教育】0-3歲嬰幼兒早教訓(xùn)練方案
- 國家中長期科技發(fā)展規(guī)劃(2021-2035)
- 經(jīng)營范圍登記規(guī)范表述目錄(試行)(V1.0.2版)
- 2023年山東省威海市中考物理真題(附答案詳解)
- 第八講 發(fā)展全過程人民民主PPT習(xí)概論2023優(yōu)化版教學(xué)課件
- 王崧舟:學(xué)習(xí)任務(wù)群與課堂教學(xué)變革 2022版新課程標(biāo)準(zhǔn)解讀解析資料 57
評論
0/150
提交評論