寧夏大學附中2025屆高二上數學期末考試模擬試題含解析_第1頁
寧夏大學附中2025屆高二上數學期末考試模擬試題含解析_第2頁
寧夏大學附中2025屆高二上數學期末考試模擬試題含解析_第3頁
寧夏大學附中2025屆高二上數學期末考試模擬試題含解析_第4頁
寧夏大學附中2025屆高二上數學期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

寧夏大學附中2025屆高二上數學期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是橢圓右焦點,點在橢圓上,線段與圓相切于點,且,則橢圓的離心率等于()A. B.C. D.2.已知,是球的球面上兩點,,為該球面上的動點,若三棱錐體積的最大值為36,則球的表面積為()A. B.C. D.3.拋物線的焦點到準線的距離為()A. B.C. D.4.在空間直角坐標系中,點關于軸對稱的點的坐標為()A. B.C. D.5.已知定義在R上的函數滿足,且當時,,則下列結論中正確的是()A. B.C. D.6.已知雙曲線的左右焦點分別為、,過點的直線交雙曲線右支于A、B兩點,若是等腰三角形,且,則的周長為()A. B.C. D.7.已知在平面直角坐標系中,圓的方程為,直線過點且與直線垂直.若直線與圓交于兩點,則的面積為A.1 B.C.2 D.8.已知矩形,,,沿對角線將折起,若二面角的余弦值為,則與之間距離為()A. B.C. D.9.阿基米德曾說過:“給我一個支點,我就能撬動地球”.他在做數學研究時,有一個有趣的問題:一個邊長為2的正方形內部挖了一個內切圓,現(xiàn)在以該內切圓的圓心且平行于正方形的一邊的直線為軸旋轉一周形成幾何體,則該旋轉體的體積為()A. B.C. D.10.已知向量,,則向量等于()A.(3,1,-2) B.(3,-1,2)C.(3,-1,-2) D.(-3,-1,-2)11.已知數列{}滿足,且,若,則=()A.-8 B.-11C.8 D.1112.直線平分圓的周長,過點作圓的一條切線,切點為,則()A.5 B.C.3 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列滿足,且,則______,數列的通項_____14.關于曲線,則以下結論正確的個數有______個①曲線C關于原點對稱;②曲線C中,;③曲線C是不封閉圖形,且它與圓無公共點;④曲線C與曲線有4個交點,這4點構成正方形15.已知函數是定義域上的單調遞增函數,是的導數且為定義域上的單調遞減函數,請寫出一個滿足條件的函數的解析式___________16.某人實施一項投資計劃,從2021年起,每年1月1日,把上一年工資的10%投資某個項目.已知2020年他的工資是10萬元,預計未來十年每年工資都會逐年增加1萬元;若投資年收益是10%,一年結算一次,當年的投資收益自動轉入下一年的投資本金,若2031年1月1日結束投資計劃,則他可以一次性取出的所有投資以及收益應有__________萬元.(參考數據:,,)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是平行四邊形,,M,N分別為的中點,.(1)證明:;(2)求直線與平面所成角的正弦值.18.(12分)已知圓C:的半徑為1(1)求實數a的值;(2)判斷直線l:與圓C是否相交?若不相交,請說明理由;若相交,請求出弦長19.(12分)已知圓關于直線對稱,且圓心C在軸上.(1)求圓C的方程;(2)直線與圓C交于A、B兩點,若為等腰直角三角形,求直線的方程.20.(12分)某校高三年級進行了一次數學測試,全年級學生的成績都落在區(qū)間內,其成績的頻率分布直方圖如圖所示,若(1)求a,b的值;(2)若成績落在區(qū)間內的人數為36人,請估計該校高三學生的人數21.(12分)某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調查他們的生產能力(生產能力指一天加工的零件數)(1)A類工人中和B類工人各抽查多少工人?(2)從A類工人中抽查結果和從B類工人中的抽查結果分別如下表1和表2:表1:生產能力分組人數48x53表2:生產能力分組人數6y3618①先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更???(不用計算,可通過觀察直方圖直接回答結論)②分別估計A類工人和B類工人生產能力的平均數,并估計該工廠工人和生產能力的平均數(同一組中的數據用該區(qū)間的中點值作代表)圖1A類工人生產能力的頻率分布直方圖圖2B類工人生產能力的頻率分布直方圖22.(10分)已知點是圓:上任意一點,是圓內一點,線段的垂直平分線與半徑相交于點(1)當點在圓上運動時,求點的軌跡的方程;(2)設不經過坐標原點,且斜率為的直線與曲線相交于,兩點,記,的斜率分別是,.當,都存在且不為時,試探究是否為定值?若是,求出此定值;若不是,請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】結合橢圓的定義、勾股定理列方程,化簡求得,由此求得離心率.【詳解】圓的圓心為,半徑為.設左焦點為,連接,由于,所以,所以,所以,由于,所以,所以,,.故選:A2、C【解析】當平面時,三棱錐體積最大,根據棱長與球半徑關系即可求出球半徑,從而求出表面積.【詳解】當平面時,三棱錐體積最大.又,則三棱錐體積,解得;故表面積.故選:C.【點睛】關鍵點點睛:本題考查三棱錐與球的組合體的綜合問題,本題的關鍵是判斷當平面時,三棱錐體積最大.3、B【解析】根據拋物線的幾何性質可得選項.【詳解】由得,所以,所以拋物線的焦點到準線的距離為1,故選:B.4、B【解析】結合已知條件,利用對稱的概念即可求解.【詳解】不妨設點關于軸對稱的點的坐標為,則線段垂直于軸且的中點在軸,從而點關于軸對稱的點的坐標為.故選:B.5、B【解析】由可得,利用導數判斷函數在上的單調性,由此比較函數值的大小確定正確選項.【詳解】∵∴,當時,,∴,故∴在內單調遞增,又,∴,所以故選:B6、A【解析】設,.根據雙曲線的定義和等腰三角形可得,再利用余弦定理可求得,從而可得的周長.【詳解】由雙曲線可得設,.則,,所以,因為是等腰三角形,且,所以,即,所以,所以,,在中,由余弦定理得,即,所以,解得,的周長故選:A【點睛】關鍵點點睛:根據雙曲線的定義求解是解題關鍵.7、A【解析】∵圓的方程為,即,∴圓的圓心為,半徑為2.∵直線過點且與直線垂直∴直線.∴圓心到直線的距離.∴直線被圓截得的弦長,又∵坐標原點到的距離為,∴的面積為.考點:1、直線與圓的位置關系;2、三角形的面積公式.8、C【解析】過點在平面內作,過點在平面內作,以、為鄰邊作平行四邊形,連接,分析可知二面角的平面角為,利用余弦定理求出,證明出,再利用勾股定理可求得的長.【詳解】過點在平面內作,過點在平面內作,以、為鄰邊作平行四邊形,連接,因為,,,則,因為,由等面積法可得,同理可得,由勾股定理可得,同理可得,,因為四邊形為平行四邊形,且,故四邊形為矩形,所以,,因為,所以,二面角的平面角為,在中,,,由余弦定理可得,,,,則,,因為,平面,平面,則,,由勾股定理可得.故選:C.9、B【解析】根據題意,結合圓柱和球的體積公式進行求解即可.【詳解】由題意可知:該旋轉體的體積等于底面半徑為,高為的圓柱的體積減去半徑為的球的體積,即,故選:B10、B【解析】根據空間向量線性運算的坐標表示即可得出答案.【詳解】解:因為,,所以.故選:B.11、C【解析】利用遞推關系,結合取值,求得即可.【詳解】因為,且,,故可得,解得(舍),;同理求得,,.故選:C.12、B【解析】根據圓的性質,結合圓的切線的性質進行求解即可.【詳解】由,所以該圓的圓心為,半徑為,因為直線平分圓的周長,所以圓心在直線上,故,因此,,所以有,所以,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】判斷出是等差數列,由此求得,利用累加法求得.【詳解】依題意,則,所以數列是以為首項,公差為的等差數列,所以,,當時,,,也符合上式,所以.故答案為:;14、2【解析】根據曲線的方程,以及曲線的對稱性、范圍,結合每個選項進行逐一分析,即可判斷.【詳解】①將方程中的分別換為,方程不變,故該曲線關于原點對稱,故正確;②因為,解得或,故,同理可得:,故錯誤;③根據②可知,該曲線不是封閉圖形;聯(lián)立與,可得:,將其視作關于的一元二次方程,故,所以方程無根,故曲線與沒有交點;綜上所述,③正確;④假設曲線C與曲線有4個交點且交點構成正方形,根據對稱性,第一象限的交點必在上,聯(lián)立與可得:,故交點為,而此點坐標不滿足,所以這樣的正方形不存在,故錯誤;綜上所述,正確的是①③.故答案為:.【點睛】本題考察曲線與方程中利用曲線方程研究曲線性質,處理問題的關鍵是把握由曲線方程如何研究對稱性以及范圍問題,屬困難題.15、(答案不唯一)【解析】由題意可得0,結合在定義域上為減函數可取.【詳解】因為在定義域為單調增函數所以在定義域上0,又因為在定義域上為減函數,且大于等于0.所以可取(),(),滿足條件所以可為().故答案為:(答案不唯一).16、24【解析】根據條件求得每一年投入在最終結算時的總收入,利用錯位相減法求得總收入.【詳解】由題知,2021年的投入在結算時的收入為,2022年的投入在結算時的收入為,,2030年的投入在結算時的收入為,則結算時的總投資及收益為:①,則②,由①-②得,,則,故答案為:24三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】(1)要證,可證,由題意可得,,易證,從而平面,即有,從而得證;(2)取中點,根據題意可知,兩兩垂直,所以以點為坐標原點,建立空間直角坐標系,再分別求出向量和平面的一個法向量,即可根據線面角的向量公式求出【詳解】(1)中,,,,由余弦定理可得,所以,.由題意且,平面,而平面,所以,又,所以(2)由,,而與相交,所以平面,因為,所以,取中點,連接,則兩兩垂直,以點為坐標原點,如圖所示,建立空間直角坐標系,則,又為中點,所以.由(1)得平面,所以平面的一個法向量從而直線與平面所成角的正弦值為【點睛】本題第一問主要考查線面垂直的相互轉化,要證明,可以考慮,題中與有垂直關系直線較多,易證平面,從而使問題得以解決;第二問思路直接,由第一問的垂直關系可以建立空間直角坐標系,根據線面角的向量公式即可計算得出18、(1);(2)直線l與圓C相交,.【解析】(1)利用配方法進行求解即可;(2)根據點到直線距離公式,結合圓的弦長公式進行求解即可.【小問1詳解】將化為標準方程得:因為圓C的半徑為1,所以,得【小問2詳解】由(1)知圓C的圓心為,半徑為1設圓心C到直線l的距離為d,則,所以直線l與圓C相交,設其交點為A,B,則,即19、(1)(2)或【解析】(1)根據題意得到等量關系,求出,,進而求出圓的方程;(2)結合第一問求出的圓心和半徑,及題干條件得到圓心到直線的距離為,列出方程,求出的值,進而得到直線方程【小問1詳解】由題意得:直線過圓心,即,且,解得:,,所以圓C的方程為;【小問2詳解】的圓心為,半徑為2,由題意得:,圓心到直線的距離為,即,解得:或,所以直線的方程為:或.20、(1)(2)人【解析】(1)由頻率分布直方圖的性質求得,結合,即可求得的值;(2)由頻率分布直方圖求得落在區(qū)間內的概率,進而求得該校高三年級的人數【小問1詳解】解:由頻率分布直方圖的性質,可得:,可得,又由,可得解得;【小問2詳解】解:由頻率分布直方圖可得,成績落在區(qū)間內的概率為,則該校高三年級的人數為(人)21、(1)25,75(2)①5,15,直方圖見解析,B類②123,133.8,131.1【解析】(1)先計算抽樣比為,進而可得各層抽取人數(2)①類、類工人人數之比為,按此比例確定兩類工人需抽取的人數,再算出和即可.畫出頻率分布直方圖,從直方圖可以判斷:類工人中個體間的差異程度更?、谌∶總€小矩形的橫坐標的中點乘以對應矩形的面積相加即得平均數.【詳解】(1)由已知可得:抽樣比,故類工人中應抽?。喝?,類工人中應抽?。喝?,(2)①由題意知,得,,得滿足條件的頻率分布直方圖如下所示:從直方圖可以判斷:類工人中個體間的差異程度更?、冢惞と松a能力的平均數,類工人生產能力的平均數以及全工廠工人生產能力的平均數的估計值分別為123,133.8和131.1【點睛】本題考查等可能事件、相互獨立事件的概率、頻率分布直方圖的理解以及利用頻率分布直方圖求平均數等知識、考查運算能力22、(1);(2)是定值,.【解析】(1)根據給定條件探求得,再借助橢圓定義直接求得軌跡的方程.(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論