版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆山東省棗莊市滕州市第一中學高一上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.與函數(shù)的圖象不相交的一條直線是()A. B.C. D.2.“四邊形是菱形”是“四邊形是平行四邊形”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.如圖,其所對應的函數(shù)可能是()A B.C. D.4.已知函數(shù),則函數(shù)()A. B.C. D.5.計算器是如何計算,,,,等函數(shù)值的?計算器使用的是數(shù)值計算法,其中一種方法是用容易計算的多項式近似地表示這些函數(shù),通過計算多項式的值求出原函數(shù)的值,如,,,其中.英國數(shù)學家泰勒(B.Taylor,1685-1731)發(fā)現(xiàn)了這些公式,可以看出,右邊的項用得越多,計算得出的和的值也就越精確.運用上述思想,可得到的近似值為()A.0.50 B.0.52C.0.54 D.0.566.設的兩根是,則A. B.C. D.7.已知集合,,若,則實數(shù)的取值范圍是()A. B.C. D.8.已知函數(shù)是定義在R上的偶函數(shù),且在區(qū)間單調(diào)遞增.若實數(shù)a滿足,則a的取值范圍是A. B.C. D.9.已知函數(shù),若對任意,總存在,使得不等式都恒成立,則實數(shù)的取值范圍為()A. B.C. D.10.已知與分別是函數(shù)與的零點,則的值為A. B.C.4 D.5二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,單位圓上有一點,點P以點P0為起點按逆時針方向以每秒弧度作圓周運動,5秒后點P的縱坐標y是_____________.12.在半徑為5的圓中,的圓心角所對的扇形的面積為_______.13.已知在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍是____________.14.已知函數(shù)是定義在上的奇函數(shù),若時,,則時,__________15.已知函數(shù)f(x)=(5-a)x-a+1,x<1ax,x≥1,滿足對任意都有成立,那么實數(shù)16.過點,的直線的傾斜角為___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知A(﹣1,0),B(1,0),動點G滿足GA⊥GB,記動點G的軌跡為曲線C(1)求曲線C的方程;(2)如圖,點M是C上任意一點,過點(3,0)且與x軸垂直的直線為l,直線AM與l相交于點E,直線BM與l相交于點F,求證:以EF為直徑的圓與x軸交于定點T,并求出點T的坐標18.已知函數(shù)滿足(1)求的解析式,并求在上的值域;(2)若對,且,都有成立,求實數(shù)k的取值范圍19.已知函數(shù)是上的偶函數(shù),且當時,.(1)求的值;(2)求函數(shù)的表達式,并直接寫出其單調(diào)區(qū)間(不需要證明);(3)若,求實數(shù)的取值范圍.20.若集合,,.(1)求;(2)若,求實數(shù)的取值范圍.21.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長2的正方形,E,F(xiàn)分別為線段DD1,BD的中點(1)求證:EF∥平面ABD1;(2)AA1=,求異面直線EF與BC所成角的正弦值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由題意求函數(shù)的定義域,即可求得與函數(shù)圖象不相交的直線.【詳解】函數(shù)的定義域是,解得:,當時,,函數(shù)的圖象不相交的一條直線是.故選:C【點睛】本題考查正切函數(shù)的定義域,屬于簡單題型.2、A【解析】由菱形和平行四邊形的定義可判斷.【詳解】解:四邊形是菱形則四邊形是平行四邊形,反之,若四邊形是平行四邊形則四邊形不一定是菱形,所以“四邊形是菱形”是“四邊形是平行四邊形”充分不必要條件.故選:A.3、B【解析】代入特殊點的坐標即可判斷答案.【詳解】設函數(shù)為,由圖可知,,排除C,D,又,排除A.故選:B.4、C【解析】根據(jù)分段函數(shù)的定義域先求出,再根據(jù),根據(jù)定義域,結(jié)合,即可求出結(jié)果.【詳解】由題意可知,,所以.故選:C.5、C【解析】根據(jù)新定義,直接計算取近似值即可.【詳解】由題意,故選:C6、D【解析】詳解】解得或或即,所以故選D7、A【解析】集合表示到的線段,集合表示過定點的直線,,說明線段和過定點的直線有交點,由此能求出實數(shù)的取值范圍【詳解】由題意可得,集合表示到的線段上的點,集合表示恒過定點的直線.∵∴線段和過定點的直線有交點∴根據(jù)圖像得到只需滿足,或故選A.【點睛】本題考查交集定義等基礎知識,考查函數(shù)與方程思想、數(shù)形結(jié)合思想,是基礎題.解答本題的關鍵是理解集合表示到的線段,集合表示過定點的直線,再通過得出直線與線段有交點,通過對應的斜率求解.8、C【解析】函數(shù)是定義在上的偶函數(shù),∴,等價為),即.∵函數(shù)是定義在上的偶函數(shù),且在區(qū)間單調(diào)遞增,∴)等價為.即,∴,解得,故選項為C考點:(1)函數(shù)的奇偶性與單調(diào)性;(2)對數(shù)不等式.【思路點晴】本題主要考查對數(shù)的基本運算以及函數(shù)奇偶性和單調(diào)性的應用,綜合考查函數(shù)性質(zhì)的綜合應用根據(jù)函數(shù)的奇偶數(shù)和單調(diào)性之間的關系,綜合性較強.由偶函數(shù)結(jié)合對數(shù)的運算法則得:,即,結(jié)合單調(diào)性得:將不等式進行等價轉(zhuǎn)化即可得到結(jié)論.9、D【解析】探討函數(shù)性質(zhì),求出最大值,再借助關于a函數(shù)單調(diào)性列式計算作答.【詳解】依題意,,則是上的奇函數(shù),當時,,在上單調(diào)遞增,在上單調(diào)遞減,則,由奇函數(shù)性質(zhì)知,函數(shù)在上的最大值是,依題意,存在,,令,顯然是一次型函數(shù),因此,或,解得或,所以實數(shù)的取值范圍為.故選:D10、D【解析】設,,由,互為反函數(shù),其圖象關于直線對稱,作直線,分別交,的圖象為A,B兩點,點為A,B的中點,聯(lián)立方程得,由中點坐標公式得:,又,故得解【詳解】解:由,化簡得,設,,由,互為反函數(shù),其圖象關于直線對稱,作直線,分別交,的圖象為A,B兩點,點為A,B的中點,聯(lián)立得;,由中點坐標公式得:,所以,故選D【點睛】本題考查了反函數(shù)、中點坐標公式及函數(shù)的零點等知識,屬于難題.二、填空題:本大題共6小題,每小題5分,共30分。11、##【解析】根據(jù)單位圓上點的坐標求出,從而求出,從而求出點P的縱坐標.【詳解】因為位于第一象限,且,故,所以,故,所以點P的縱坐標故答案為:12、【解析】先根據(jù)弧度的定義求得扇形的弧長,即可由扇形面積公式求得扇形的面積.【詳解】設扇形的弧長為根據(jù)弧度定義可知則由扇形面積公式代入可得故答案為:【點睛】本題考查了弧度的定義,扇形面積的求法,屬于基礎題.13、【解析】根據(jù)復合函數(shù)單調(diào)性的判斷方法,結(jié)合對數(shù)函數(shù)的定義域,即可求得的取值范圍.【詳解】在區(qū)間上單調(diào)遞減由對數(shù)部分為單調(diào)遞減,且整個函數(shù)單調(diào)遞減可知在上單調(diào)遞增,且滿足所以,解不等式組可得即滿足條件的取值范圍為故答案為:【點睛】本題考查了復合函數(shù)單調(diào)性的應用,二次函數(shù)的單調(diào)性,對數(shù)函數(shù)的性質(zhì),屬于中檔題.14、【解析】函數(shù)是定義在上的奇函數(shù),當時,當時,則,,故答案為.15、【解析】利用求解分段函數(shù)單調(diào)性的方法列出不等式關系,由此即可求解【詳解】由已知可得函數(shù)在R上為單調(diào)遞增函數(shù),則需滿足,解得,所以實數(shù)a的取值范圍為,故答案為:16、##【解析】設直線的傾斜角為,求出直線的斜率即得解.【詳解】解:設直線的傾斜角為,由題得直線的斜率為,因為,所以.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)x2+y2=1;(2)證明見解析,T(3+2,0)或T(3﹣2,0)【解析】(1)由可得,列出等式即可求動點的軌跡方程;(2)設出點M的坐標,我們可以得到直線AM、直線BM的方程,與直線方程聯(lián)立求得點E、點F的坐標,進而得到以為直徑的圓的方程,最后求出定點坐標.【詳解】(1)設G(x,y)(x≠±1),因為GA⊥GB,所以,整理得C的方程為x2+y2=1(x≠±1);(2)設點M(x0,y0)(x0≠±1),且有x02+y02=1,則直線AM的方程為y,令x=3,得E(3,),直線BM的方程為y,令x=3,得F(3,),從而以EF為直徑的圓方程為(x﹣3)2+(y)(y)=0,令y=0,則(x﹣3)2?0,即(x﹣3)20,又因為x02+y02=1,所以,代入可得x2﹣6x+1=0,解得x=3±2,所以定點T(3+2,0)或T(3﹣2,0)【點睛】本題考查動點的軌跡方程,考查直線與圓的方程的應用問題,屬于中檔題,涉及到的知識點有直線的點斜式方程,由圓上兩點的坐標列出圓的方程,認真分析題意求得結(jié)果.18、(1),(2)【解析】(1)由條件可得,然后可解出,然后利用對勾函數(shù)的知識可得答案;(2)設,條件中的不等式可變形為,即可得在區(qū)間(2,4)遞增,然后分、、三種情況討論求解即可.【小問1詳解】因為①,所以②,聯(lián)立①②解得.當時為增函數(shù),時為減函數(shù),因為所以【小問2詳解】對,,,都有,不妨設,則由恒成立,也即可得函數(shù)在區(qū)間(2,4)遞增;當,即時,滿足題意;當,即時,為兩個在上單調(diào)遞增函數(shù)的和,則可得在單調(diào)遞增,從而滿足在(2,4)遞增,符合題意;當,即時,,其在遞減,在遞增,若使在(2,4)遞增,則只需;綜上可得:19、(1)(2)答案見解析(3)【解析】(1)根據(jù)偶函數(shù)的性質(zhì)直接計算;(2)當時,則,根據(jù)偶函數(shù)的性質(zhì)即可求出;(3)由題可得,根據(jù)單調(diào)性可得,即可解出.【小問1詳解】因為是上的偶函數(shù),所以.【小問2詳解】當時,則,則,故當時,,故,故的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.【小問3詳解】若,即,即因為在單調(diào)遞減,所以,故或,解得:或,即.20、(1);(2).【解析】(1)解不等式求出集合,再進行交集運算即可求解;(2)解不等式求集合,根據(jù)并集的結(jié)果列不等式即可求解.【詳解】(1),,;(2),或,,.即實數(shù)的取值范圍為.21、(1)證明過程詳見解析(2)【解析】(1)先證明EF∥D1B,即證EF∥平面ABD1.(2)先證明∠D1BC是異面直線EF與BC所成的角(或所成角的補角),再解三角形求其正弦值.【詳解】(1)證明:連結(jié)BD1,在△DD1B中,E、F分別是D1D、DB的中點,∴EF是△DD1B的中位線,∴EF∥D1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 滑行車幼兒課程設計
- 2024年教育培訓機構(gòu)教師勞動合同規(guī)范文本3篇
- 機電課程設計前言
- 2024內(nèi)衣行業(yè)產(chǎn)品包裝設計與應用合同模板3篇
- 2024年度養(yǎng)殖土地承包與農(nóng)業(yè)信息化服務合同范本3篇
- 2024升降機租賃與施工安全協(xié)議合同3篇
- 2024年度旅游線路規(guī)劃單項服務合同3篇
- 籃球暑期課程設計
- 微機模擬空調(diào)課程設計
- 電信課程設計論文范文
- 空調(diào)檢驗報告
- 陜西省西安市碑林區(qū)鐵一中學2020-2021學年七年級上學期期末數(shù)學試題(含答案解析)
- 簡支梁、懸臂梁撓度計算程序(自動版)
- 埋地鋼管結(jié)構(gòu)計算
- X-Y數(shù)控工作臺及其控制系統(tǒng)設計
- 統(tǒng)編版小學四年級語文上冊五六單元測試卷(附答案)
- 高支模技術交底(新版)
- 電工新技術介紹(課堂PPT)
- 我最喜歡的節(jié)日的小學英語作文我喜歡的節(jié)日英語作文.doc
- 機電設備維護保養(yǎng)技術
- 對于部門整體支出績效評價結(jié)果整改報告
評論
0/150
提交評論