版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇省蘇州市陸慕高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末檢測試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若變量x,y滿足約束條件,則目標(biāo)函數(shù)最大值為()A.1 B.-5C.-2 D.-72.兩條平行直線與之間的距離為()A. B.C. D.3.雅言傳承文明,經(jīng)典浸潤人生.某市舉辦“中華經(jīng)典誦寫講大賽”,大賽分為四類:“誦讀中國”經(jīng)典誦讀大賽、“詩教中國”詩詞講解大賽、“筆墨中國”漢字書寫大賽、“印記中國”學(xué)生篆刻大賽.某人決定從這四類比賽中任選兩類參賽,則“誦讀中國”被選中的概率為()A. B.C. D.4.已知向量,,且與互相垂直,則k的值是().A.1 B.C. D.5.雙曲線的焦點(diǎn)坐標(biāo)是()A. B.C. D.6.已知是拋物線上的一個(gè)動點(diǎn),是圓上的一個(gè)動點(diǎn),是一個(gè)定點(diǎn),則的最小值為A. B.C. D.7.如圖,,是平面上兩點(diǎn),且,圖中的一系列圓是圓心分別為,的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,A,B,C,D,E是圖中兩組同心圓的部分公共點(diǎn).若點(diǎn)A在以,為焦點(diǎn)的橢圓M上,則()A.點(diǎn)B和C都在橢圓M上 B.點(diǎn)C和D都在橢圓M上C.點(diǎn)D和E都在橢圓M上 D.點(diǎn)E和B都在橢圓M上8.直線的斜率為()A.135° B.45°C.1 D.-19.已知雙曲線的左焦點(diǎn)為,,為雙曲線的左、右頂點(diǎn),漸近線上的一點(diǎn)滿足,且,則雙曲線的離心率為()A. B.C. D.10.已知數(shù)列中,,,是的前n項(xiàng)和,則()A. B.C. D.11.直線的傾斜角是A. B.C. D.12.如圖,M為OA的中點(diǎn),以為基底,,則實(shí)數(shù)組等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.展開式的常數(shù)項(xiàng)是________14.某次實(shí)驗(yàn)得到如下7組數(shù)據(jù),通過判斷知道與具有線性相關(guān)性,其線性回歸方程為,則______.(參考公式:)12345676.06.26.36.46.46.76.815.在中,,,的外接圓半徑為,則邊c的長為_____.16.設(shè)橢圓,點(diǎn)在橢圓上,求該橢圓在P處的切線方程______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中內(nèi)角A、B、C所對的邊分別為a、b、c,且(1)求角A(2)若,,求的面積18.(12分)某市對排污水進(jìn)行綜合治理,征收污水處理費(fèi),系統(tǒng)對各廠一個(gè)月內(nèi)排出污水量x噸收取的污水處理費(fèi)y元,運(yùn)行程序如圖所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)請寫出y與x的函數(shù)關(guān)系式;(2)求排放污水150噸的污水處理費(fèi)用.19.(12分)已知拋物線的焦點(diǎn)F,C上一點(diǎn)到焦點(diǎn)的距離為5(1)求C的方程;(2)過F作直線l,交C于A,B兩點(diǎn),若線段AB中點(diǎn)的縱坐標(biāo)為-1,求直線l的方程20.(12分)已知拋物線的焦點(diǎn)在直線上(1)求拋物線的方程(2)設(shè)直線經(jīng)過點(diǎn),且與拋物線有且只有一個(gè)公共點(diǎn),求直線的方程21.(12分)在棱長為1的正方體ABCD-A1B1C1D1中,求平面ACD1的一個(gè)法向量.22.(10分)如圖,四棱臺的底面為正方形,面,(1)求證:平面;(2)若平面平面,求直線m與平面所成角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進(jìn)行求最值即可【詳解】解:由得作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分平移直線,由圖象可知當(dāng)直線,過點(diǎn)時(shí)取得最大值,由,解得,所以代入目標(biāo)函數(shù),得,故選:A2、D【解析】由已知有,所以直線可化為,利用兩平行直線距離公式有,選D.點(diǎn)睛:本題主要考查兩平行直線間的距離公式,屬于易錯(cuò)題.在用兩平行直線距離公式時(shí),兩直線中的系數(shù)要相同,不然不能用此公式計(jì)算3、B【解析】由已知條件得基本事件總數(shù)為種,符合條件的事件數(shù)為3中,由古典概型公式直接計(jì)算即可.【詳解】從四類比賽中選兩類參賽,共有種選擇,其中“誦讀中國”被選中的情況有3種,即“誦讀中國”和“詩教中國”,“誦讀中國”和“筆墨中國”,“誦讀中國”和“印記中國”,由古典概型公式可得,故選:.4、D【解析】利用向量的數(shù)量積為0可求的值.【詳解】因與互相垂直,故,故即,故.故選:D.5、B【解析】根據(jù)雙曲線的方程,求得,結(jié)合雙曲線的幾何性質(zhì),即可求解.【詳解】由題意,雙曲線,可得,所以,且雙曲線的焦點(diǎn)再軸上,所以雙曲線的焦點(diǎn)坐標(biāo)為.故選:B.6、A【解析】恰好為拋物線的焦點(diǎn),等于到準(zhǔn)線的距離,要想最小,過圓心作拋物線的準(zhǔn)線的垂線交拋物線于點(diǎn),交圓于,最小值等于圓心到準(zhǔn)線的距離減去半徑4-1=.考點(diǎn):1.拋物線的定義;2.圓中的最值問題;7、C【解析】根據(jù)橢圓的定義判斷即可求解.【詳解】因?yàn)?,所以橢圓M中,因?yàn)椋?,,所以D,E在橢圓M上.故選:C8、D【解析】由斜截式直接看出直線斜率.【詳解】由題意得:直線斜率為-1,故選:D9、C【解析】由雙曲線的漸近線方程和兩點(diǎn)的距離公式,求得點(diǎn)的坐標(biāo)和,在中,利用余弦定理,求得的關(guān)系式,再由離心率公式,計(jì)算即可求解.【詳解】由題意,雙曲線,可得,設(shè)在漸近線上,且點(diǎn)在第一象限內(nèi),由,解得,即點(diǎn),所以,在中,由余弦定理可得,可得,即,所以雙曲線離心率為.故選:C.【點(diǎn)睛】求解橢圓或雙曲線的離心率的三種方法:1、定義法:通過已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;2、齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;3、特殊值法:通過取特殊值或特殊位置,求出離心率.10、D【解析】由,得到為遞增數(shù)列,又由,得到,化簡,即可求解.【詳解】解:由,得,又,所以,所以,即,所以數(shù)列為遞增數(shù)列,所以,得,即,又由是的前項(xiàng)和,則.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查數(shù)列求和問題,關(guān)鍵在于由已知條件得出,運(yùn)用裂項(xiàng)相消求和法.11、D【解析】由方程得到斜率,然后可得其傾斜角.【詳解】因?yàn)橹本€的斜率為所以其傾斜角為故選:D12、B【解析】根據(jù)空間向量減法的幾何意義進(jìn)行求解即可.【詳解】,所以實(shí)數(shù)組故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出的通項(xiàng)公式,令的指數(shù)為0,即可求解.【詳解】的通項(xiàng)公式是,,依題意,令,所以的展開式中的常數(shù)項(xiàng)為.故答案為:.14、9##【解析】求得樣本中心點(diǎn)的坐標(biāo),代入回歸直線,即可求得.詳解】根據(jù)表格數(shù)據(jù)可得:故,解得.故答案為:.15、【解析】由面積公式求得,結(jié)合外接圓半徑,利用正弦定理得到邊c的長.【詳解】,從而,由正弦定理得:,解得:故答案為:16、【解析】由題意可知切線的斜率存在,所以設(shè)切線方程為,代入橢圓方程中整理化簡,令判別式等于零,可求出的值,從而可求得切線方程【詳解】由題意可知切線的斜率存在,所以設(shè)切線方程為,將代入中得,,化簡整理得,令,化簡整理得,即,解得,所以切線方程為,即,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)正弦定理,結(jié)合三角形內(nèi)角和定理、兩角和的正弦公式進(jìn)行求解即可;(2)根據(jù)余弦定理,結(jié)合三角形面積公式進(jìn)行求解即可.【小問1詳解】,由正弦定理知,,即又,且.所以,由于.所以;【小問2詳解】由余弦定理得:,又,所以所以.18、(1);(2)1400(元).【解析】(1)根據(jù)已知條件即可容易求得函數(shù)關(guān)系式;(2)根據(jù)(1)中所求函數(shù)關(guān)系式,令,求得函數(shù)值即可.【小問1詳解】根據(jù)題意,得:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.即.【小問2詳解】因?yàn)?,故,故該廠應(yīng)繳納污水處理費(fèi)1400元.19、(1);(2).【解析】(1)由拋物線的定義,結(jié)合已知有求p,寫出拋物線方程.(2)由題意設(shè)直線l為,聯(lián)立拋物線方程,應(yīng)用韋達(dá)定理可得,由中點(diǎn)公式有,進(jìn)而求k值,寫出直線方程.【詳解】(1)由題意知:拋物線的準(zhǔn)線為,則,可得,∴C的方程為.(2)由(1)知:,由題意知:直線l的斜率存在,令其方程為,∴聯(lián)立拋物線方程,得:,,若,則,而線段AB中點(diǎn)的縱坐標(biāo)為-1,∴,即,得,∴直線l的方程為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:(1)利用拋物線定義求參數(shù),寫出拋物線方程;(2)由直線與拋物線相交,以及相交弦的中點(diǎn)坐標(biāo)值,應(yīng)用韋達(dá)定理、中點(diǎn)公式求直線斜率,并寫出直線方程.20、(1)(2)的方程為、、【解析】(1)求得點(diǎn)的坐標(biāo),由此求得,進(jìn)而求得拋物線的方程.(2)結(jié)合圖象以及判別式求得直線的方程.【小問1詳解】拋物線的焦點(diǎn)在軸上,且開口向上,直線與軸的交點(diǎn)為,則,所以,拋物線的方程為.【小問2詳解】當(dāng)直線的斜率不存在時(shí),直線與拋物線只有一個(gè)公共點(diǎn).那個(gè)直線的斜率存在時(shí),設(shè)直線的方程為,,,,解得或.所以直線的方程為或.綜上所述,的方程為、、.21、【解析】建立空間直角坐標(biāo)系,由向量法求法向量即可.【詳解】如圖,建立空間直角坐標(biāo)系,則設(shè)平面ACD1的法向量.,又為平面ACD1的一個(gè)法向量,化簡得令x=1,得y=z=1.平面ACD1的一個(gè)法向量.【點(diǎn)睛】本題主要考查了求平面的法向量,屬于中檔題.22、(1)證明見解析;(2).【解析】(1):連結(jié)交交于點(diǎn)O,連結(jié),,通過四棱臺的性質(zhì)以及給定長度證明,從而證出,利用線面平行的判定定理可證明面;(2)利用線面平行的性質(zhì)定理以及基本事實(shí)可證明,即求與平面所成角的正弦值;通過條件以及面面垂直的判定定理可證明面面,則為與平面所成角,利用余弦定理求出余弦值,即可求出正弦值.【詳解】(1)證明:連結(jié)交交于點(diǎn)O,連結(jié),,由多面體為四棱臺可知四點(diǎn)共面,且面面,面面,面面,∴,∵和均為正方形,,∴,所以為平行四邊形,∴,面,面,∴平面(2)∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第3章結(jié)締組織課件講課資料
- 更年期用藥未來發(fā)展趨勢報(bào)告
- 開展三責(zé)兩對標(biāo)教育活動培訓(xùn)資料
- 2024年浙江舟山群島新區(qū)旅游與健康職業(yè)學(xué)院高職單招職業(yè)技能測驗(yàn)歷年參考題庫(頻考版)含答案解析
- 2024年陽春市中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點(diǎn)附帶答案
- 2024年江蘇經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測驗(yàn)歷年參考題庫(頻考版)含答案解析
- 二零二五年度門窗安裝工程質(zhì)保合同范本2篇
- 2024年武漢鐵路橋梁職業(yè)學(xué)院高職單招語文歷年參考題庫含答案解析
- 二零二五版不履行離婚協(xié)議贍養(yǎng)費(fèi)追償起訴狀3篇
- 2024年杭州職業(yè)技術(shù)學(xué)院高職單招語文歷年參考題庫含答案解析
- 尼日利亞變電站電氣施工組織設(shè)計(jì)
- 關(guān)于退款協(xié)議書范文
- 決戰(zhàn)期末全力以“復(fù)”課件-2023-2024學(xué)年高二下學(xué)期期末動員主題班會
- 平安產(chǎn)險(xiǎn)云南省商業(yè)性桑蠶養(yǎng)殖保險(xiǎn)條款
- 股權(quán)協(xié)議書和合伙人協(xié)議書
- 全媒體訪談方案
- 中國左心耳封堵器行業(yè)市場現(xiàn)狀分析及競爭格局與投資發(fā)展研究報(bào)告2024-2034版
- 《柴油加氫培訓(xùn)包》課件-9 柴油加氫設(shè)備-加氫反應(yīng)器常見的損傷
- 企業(yè)EHS風(fēng)險(xiǎn)管理基礎(chǔ)智慧樹知到期末考試答案2024年
- 老年人肥胖癥的特點(diǎn)與保健方法
- 電氣維修施工方案
評論
0/150
提交評論