




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆滄州市重點中學高二數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將一枚骰子連續(xù)拋兩次,得到正面朝上的點數(shù)分別為、,記事件A為“為偶數(shù)”,事件B為“”,則的值為()A. B.C. D.2.拋物線的準線方程是A.x=1 B.x=-1C. D.3.已知命題,;命題,,那么下列命題為假命題的是()A. B.C. D.4.已知直線的傾斜角為,在軸上的截距為,則此直線的方程為()A. B.C. D.5.已知是拋物線上的一個動點,是圓上的一個動點,是一個定點,則的最小值為A. B.C. D.6.某三棱錐的三視圖如圖所示,則該三棱錐內(nèi)切球的表面積為A.B.C.D.7.已知圓上有三個點到直線的距離等于1,則的值為()A. B.C. D.18.已知向量,,若,則()A.1 B.C. D.29.已知拋物線,過其焦點且斜率為1的直線交拋物線于A,B兩點,若線段AB的中點的橫坐標為3,則該拋物線的準線方程為()A. B.C. D.10.已知、,則直線的傾斜角為()A. B.C. D.11.數(shù)列,,,,…,是其第()項A.17 B.18C.19 D.2012.已知,分別是圓和圓上的動點,點在直線上,則的最小值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知遞增數(shù)列共有2021項,且各項均不為零,,如果從中任取兩項,當時,仍是數(shù)列中的項,則的范圍是________________,數(shù)列的所有項和________14.在的展開式中項的系數(shù)為______.(結果用數(shù)值表示)15.曲線在點處的切線方程為_________16.直線l過拋物線的焦點F,與拋物線交于A,B兩點,若,則直線l的斜率為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓關于直線對稱,且圓心C在軸上.(1)求圓C的方程;(2)直線與圓C交于A、B兩點,若為等腰直角三角形,求直線的方程.18.(12分)已知數(shù)列中,.(1)證明是等比數(shù)列,并求通項公式;(2)設,記數(shù)列的前n項和為,求使恒成立的最小的整數(shù)k.19.(12分)已知正三棱柱底面邊長為,是上一點,是以為直角頂點的等腰直角三角形(1)證明:是中點;(2)求點到平面的距離20.(12分)在平面直角坐標系xOy中,橢圓C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為(t為參數(shù))(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;(Ⅱ)若點P(1,2),設直線l與橢圓C相交于A,B兩點,求|PA|·|PB|的值21.(12分)已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,,,△ABC的面積為(1)求a;(2)若D為BC邊上一點,且∠BAD=,求∠ADC的正弦值22.(10分)在直角坐標系中,以坐標原點O為圓心的圓與直線相切.(1)求圓O的方程;(2)設圓O交x軸于A,B兩點,點P在圓O內(nèi),且是、的等比中項,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用條件概率的公式求解即可.【詳解】根據(jù)題意可知,若事件為“為偶數(shù)”發(fā)生,則、兩個數(shù)均為奇數(shù)或均為偶數(shù),其中基本事件數(shù)為,,,,,,,,,,,,,,,,,,一共個基本事件,∴,而A、同時發(fā)生,基本事件有當一共有9個基本事件,∴,則在事件A發(fā)生的情況下,發(fā)生的概率為,故選:2、C【解析】先把拋物線方程整理成標準方程,進而求得p,再根據(jù)拋物線性質(zhì)得出準線方程【詳解】解:整理拋物線方程得,∴p=∵拋物線方程開口向上,∴準線方程是y=﹣故答案為C【點睛】本題主要考查拋物線的標準方程和簡單性質(zhì).屬基礎題3、B【解析】由題設命題的描述判斷、的真假,再判斷其復合命題的真假即可.【詳解】對于命題,僅當時,故為假命題;對于命題,由且開口向上,故為真命題;所以為真命題,為假命題,綜上,為真,為假,為真,為真.故選:B4、D【解析】求出直線的斜率,利用斜截式可得出直線的方程.【詳解】直線的斜率為,由題意可知,所求直線的方程為.故選:D.5、A【解析】恰好為拋物線的焦點,等于到準線的距離,要想最小,過圓心作拋物線的準線的垂線交拋物線于點,交圓于,最小值等于圓心到準線的距離減去半徑4-1=.考點:1.拋物線的定義;2.圓中的最值問題;6、A【解析】由三視圖可知該幾何體是一個三棱錐,根據(jù)等積法求出幾何體內(nèi)切球的半徑,再計算內(nèi)切球的表面積【詳解】解:由三視圖知該幾何體是一個三棱錐,放入棱長為2的正方體中,如圖所示:設三棱錐內(nèi)切球的半徑為,則由等體積法得,解得,所以該三棱錐內(nèi)切球的表面積為故選:A【點睛】本題考查了由三視圖求三棱錐內(nèi)切球表面積的應用問題,屬于中檔題7、A【解析】求出圓心和半徑,由題意可得圓心到直線的距離,列方程即可求得的值.【詳解】由圓可得圓心,半徑,因為圓上有三個點到直線的距離等于1,所以圓心到直線的距離,可得:,故選:A.8、B【解析】由向量平行,先求出的值,再由模長公式求解模長.【詳解】由,則,即則,所以則故選:B9、B【解析】設,進而根據(jù)題意,結合中點弦的問題得,進而再求解準線方程即可.【詳解】解:根據(jù)題意,設,所以①,②,所以,①②得:,即,因為直線AB的斜率為1,線段AB的中點的橫坐標為3,所以,即,所以拋物線,準線方程為.故選:B10、B【解析】設直線的傾斜角為,利用直線的斜率公式求出直線的斜率,進而可得出直線的傾斜角.【詳解】設直線的傾斜角為,由斜率公式可得,,因此,.故選:B.11、D【解析】根據(jù)題意,分析歸納可得該數(shù)列可以寫成,,,……,,可得該數(shù)列的通項公式,分析可得答案.【詳解】解:根據(jù)題意,數(shù)列,,,,…,,可寫成,,,……,,對于,即,為該數(shù)列的第20項;故選:D.【點睛】此題考查了由數(shù)列的項歸納出數(shù)列的通項公式,考查歸納能力,屬于基礎題.12、B【解析】由已知可得,,求得關于直線的對稱點為,則,計算即可得出結果.【詳解】由題意可知圓的圓心為,半徑,圓的圓心為,半徑設關于直線的對稱點為,則解得,則因為,分別在圓和圓上,所以,,則因為,所以故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.1011【解析】根據(jù)題意得到,得到,,,,進而得到,從而即可求得的值.【詳解】由題意,遞增數(shù)列共有項,各項均不為零,且,所以,所以的范圍是,因為時,仍是數(shù)列中的項,即,且上述的每一項均在數(shù)列中,所以,,,,即,所以,所以.故答案為:;.14、【解析】先求解出該二項式展開式的通項,然后求解出滿足題意的項數(shù)值,帶入通項即可求解出展開式的系數(shù).【詳解】展開式通項為,由題意,令,解得,,所以項的系數(shù)為.故答案為:.15、【解析】求導,求出切線斜率,用點斜式寫出直線方程,化簡即可.【詳解】,曲線在點處的切線方程為,即故答案為:16、【解析】如圖,設,兩點的拋物線的準線上的射影分別為,,過作的垂線,在三角形中,等于直線的傾斜角,其正切值即為值,利用在直角三角形中,求得,從而得出直線的斜率【詳解】解:如圖,當在第一象限時,設,兩點的拋物線的準線上的射影分別為,,過作的垂線,在三角形中,等于直線的傾斜角,其正切值即為值,由拋物線的定義可知:設,則,,,在直角三角形中,,所以,則直線的斜率;當在第四象限時,同理可得,直線的斜率,綜上可得直線l的斜率為;故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)根據(jù)題意得到等量關系,求出,,進而求出圓的方程;(2)結合第一問求出的圓心和半徑,及題干條件得到圓心到直線的距離為,列出方程,求出的值,進而得到直線方程【小問1詳解】由題意得:直線過圓心,即,且,解得:,,所以圓C的方程為;【小問2詳解】的圓心為,半徑為2,由題意得:,圓心到直線的距離為,即,解得:或,所以直線的方程為:或.18、(1)證明見解析,(2)4【解析】(1)由,得到,利用等比數(shù)列的定義求解;(2)由(1)得到,然后利用錯位相減法求解.【小問1詳解】證明:由,得,∴,∴數(shù)列是以3為公比,以為首項的等比數(shù)列,∴,即.【小問2詳解】由題意得.,兩式相減得:,因為,所以,所以使恒成立的最小的整數(shù)k為4.19、(1)證明見解析;(2).【解析】(1)證明出平面,可得出,再利用等腰三角形的幾何性質(zhì)可證得結論成立;(2)計算出三棱錐的體積以及的面積,利用等體積法可求得點到平面的距離.【小問1詳解】證明:在正三棱柱,平面,平面,則,因為是以為直角頂點的等腰直角三角形,則,,則平面,平面,所以,,因為為等邊三角形,故點為的中點.【小問2詳解】解:因為是邊長為的等邊三角形,則,平面,平面,則,即,所以,,,,設點到平面的距離為,,,解得.因此,點到平面距離為.20、(I)見解析;(Ⅱ).【解析】(Ⅰ)利用平方法消去θ得到橢圓C的普通方程為,根據(jù)直線參數(shù)方程的幾何意義求出直線的斜率,從而可得結果;(Ⅱ)把直線的方程,代入中,利用直線參數(shù)方程的幾何意義求出直線的斜率結合韋達定理可得結果.試題解析:(Ⅰ)消去θ得到橢圓C的普通方程為∵直線的斜率為,∴直線l的傾斜角為(Ⅱ)把直線的方程,代入中,得即,∴t1·t2=4,即|PA|·|PB|=421、(1)(2)【解析】(1)利用面積公式及余弦定理可求解;(2)由正弦定理得到,再運用同角函數(shù)的關系得到,最后運用正弦的兩角和公式求解即可.【小問1詳解】∵,,,∴由余弦定理:,∴【小問2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 服裝設計版權轉(zhuǎn)讓合同
- 住宅購買合同定金協(xié)議及補充條款
- 建筑工程合同投標書標準范本
- 私人住宿出租合同及條款
- 7 媽媽睡了(教學設計)2024-2025學年統(tǒng)編版語文二年級上冊
- 度合同型車輛生產(chǎn)及裝配特許協(xié)議
- 不動產(chǎn)權與動產(chǎn)汽車交換合同
- 重型貨車運輸合同協(xié)議
- 12《尋找生活中的標志》(教學設計)-2023-2024學年二年級上冊綜合實踐活動魯科版
- 5 走近科學家 教學設計-2024-2025學年道德與法治三年級上冊統(tǒng)編版
- CB/T 102-1996錫基合金軸瓦鑄造技術條件
- 羅森便利店QSC標準課件講義
- 售后服務的流程圖
- 讀《讀懂孩子》讀書心得體會
- 《勞動合同法》普法宣傳資料
- 二年級下冊科學教案-2.3科技產(chǎn)品體驗會 大象版
- 退役軍人優(yōu)待證申領表
- Q∕SY 19001-2017 風險分類分級規(guī)范
- 勞務分包項目經(jīng)理崗位職責
- 幼兒繪本故事:奇怪的雨傘店
- 鋼琴基礎教程教案
評論
0/150
提交評論