版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
青海省海南州2025屆數(shù)學(xué)高三上期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.2.設(shè)雙曲線的右頂點為,右焦點為,過點作平行的一條漸近線的直線與交于點,則的面積為()A. B. C.5 D.63.函數(shù)fxA. B.C. D.4.某個小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.1405.如圖是二次函數(shù)的部分圖象,則函數(shù)的零點所在的區(qū)間是()A. B. C. D.6.已知曲線且過定點,若且,則的最小值為().A. B.9 C.5 D.7.已知,,,則的最小值為()A. B. C. D.8.若,則下列不等式不能成立的是()A. B. C. D.9.若的展開式中含有常數(shù)項,且的最小值為,則()A. B. C. D.10.設(shè)是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標(biāo)原點),且,則雙曲線的離心率為()A. B. C. D.11.已知,則()A. B. C. D.12.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記實數(shù)中的最大數(shù)為,最小數(shù)為.已知實數(shù)且三數(shù)能構(gòu)成三角形的三邊長,若,則的取值范圍是.14.記復(fù)數(shù)z=a+bi(i為虛數(shù)單位)的共軛復(fù)數(shù)為,已知z=2+i,則_____.15.直線過圓的圓心,則的最小值是_____.16.在直角三角形中,為直角,,點在線段上,且,若,則的正切值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),不等式的解集為.(1)求實數(shù),的值;(2)若,,,求證:.18.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點、分別為,的中點,且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.19.(12分)己知,,.(1)求證:;(2)若,求證:.20.(12分)隨著電子閱讀的普及,傳統(tǒng)紙質(zhì)媒體遭受到了強烈的沖擊.某雜志社近9年來的紙質(zhì)廣告收入如下表所示:根據(jù)這9年的數(shù)據(jù),對和作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.243;根據(jù)后5年的數(shù)據(jù),對和作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.984.(1)如果要用線性回歸方程預(yù)測該雜志社2019年的紙質(zhì)廣告收入,現(xiàn)在有兩個方案,方案一:選取這9年數(shù)據(jù)進行預(yù)測,方案二:選取后5年數(shù)據(jù)進行預(yù)測.從實際生活背景以及線性相關(guān)性檢驗的角度分析,你覺得哪個方案更合適?附:相關(guān)性檢驗的臨界值表:(2)某購物網(wǎng)站同時銷售某本暢銷書籍的紙質(zhì)版本和電子書,據(jù)統(tǒng)計,在該網(wǎng)站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質(zhì)版本和電子書同時購買的讀者比例為,現(xiàn)用此統(tǒng)計結(jié)果作為概率,若從上述讀者中隨機調(diào)查了3位,求購買電子書人數(shù)多于只購買紙質(zhì)版本人數(shù)的概率.21.(12分)己知函數(shù).(1)當(dāng)時,求證:;(2)若函數(shù),求證:函數(shù)存在極小值.22.(10分)如圖,在平面直角坐標(biāo)系中,橢圓的離心率為,且過點.求橢圓的方程;已知是橢圓的內(nèi)接三角形,①若點為橢圓的上頂點,原點為的垂心,求線段的長;②若原點為的重心,求原點到直線距離的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)雙曲線的定義可得的邊長為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關(guān)系式.2、A【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程求出右頂點、右焦點的坐標(biāo),再求出過點與的一條漸近線的平行的直線方程,通過解方程組求出點的坐標(biāo),最后利用三角形的面積公式進行求解即可.【詳解】由雙曲線的標(biāo)準(zhǔn)方程可知中:,因此右頂點的坐標(biāo)為,右焦點的坐標(biāo)為,雙曲線的漸近線方程為:,根據(jù)雙曲線和漸近線的對稱性不妨設(shè)點作平行的一條漸近線的直線與交于點,所以直線的斜率為,因此直線方程為:,因此點的坐標(biāo)是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【點睛】本題考查了雙曲線的漸近線方程的應(yīng)用,考查了兩直線平行的性質(zhì),考查了數(shù)學(xué)運算能力.3、A【解析】
由f12=e-14>0排除選項D;【詳解】由f12=e-14>0,可排除選項D,f-1=-e【點睛】本題通過對多個圖象的選擇考查函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及x→04、C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內(nèi)用水量超過15立方米的住戶戶數(shù)為,故選C5、B【解析】
根據(jù)二次函數(shù)圖象的對稱軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點函數(shù)值正負,即可求出結(jié)論.【詳解】∵,結(jié)合函數(shù)的圖象可知,二次函數(shù)的對稱軸為,,,∵,所以在上單調(diào)遞增.又因為,所以函數(shù)的零點所在的區(qū)間是.故選:B.【點睛】本題考查二次函數(shù)的圖象及函數(shù)的零點,屬于基礎(chǔ)題.6、A【解析】
根據(jù)指數(shù)型函數(shù)所過的定點,確定,再根據(jù)條件,利用基本不等式求的最小值.【詳解】定點為,,當(dāng)且僅當(dāng)時等號成立,即時取得最小值.故選:A【點睛】本題考查指數(shù)型函數(shù)的性質(zhì),以及基本不等式求最值,意在考查轉(zhuǎn)化與變形,基本計算能力,屬于基礎(chǔ)題型.7、B【解析】,選B8、B【解析】
根據(jù)不等式的性質(zhì)對選項逐一判斷即可.【詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【點睛】本題考查不等關(guān)系和不等式,屬于基礎(chǔ)題.9、C【解析】展開式的通項為,因為展開式中含有常數(shù)項,所以,即為整數(shù),故n的最小值為1.所以.故選C點睛:求二項展開式有關(guān)問題的常見類型及解題策略(1)求展開式中的特定項.可依據(jù)條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第項,由特定項得出值,最后求出其參數(shù).10、D【解析】
利用向量運算可得,即,由為的中位線,得到,所以,再根據(jù)雙曲線定義即可求得離心率.【詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點睛】本題綜合考查向量運算與雙曲線的相關(guān)性質(zhì),難度一般.11、B【解析】
利用誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡求解即可.【詳解】,本題正確選項:【點睛】本題考查誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計算能力.12、D【解析】
結(jié)合三視圖可知,該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,則上半部分的半個圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運算求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:顯然,又,①當(dāng)時,,作出可行區(qū)域,因拋物線與直線及在第一象限內(nèi)的交點分別是(1,1)和,從而②當(dāng)時,,作出可行區(qū)域,因拋物線與直線及在第一象限內(nèi)的交點分別是(1,1)和,從而綜上所述,的取值范圍是.考點:不等式、簡單線性規(guī)劃.14、3﹣4i【解析】
計算得到z2=(2+i)2=3+4i,再計算得到答案.【詳解】∵z=2+i,∴z2=(2+i)2=3+4i,則.故答案為:3﹣4i.【點睛】本題考查了復(fù)數(shù)的運算,共軛復(fù)數(shù),意在考查學(xué)生的計算能力.15、【解析】
直線mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質(zhì)即可得出.【詳解】∵mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當(dāng)且僅當(dāng)m=n時取等號.∴則的最小值是4.故答案為:4.【點睛】本題考查了圓的標(biāo)準(zhǔn)方程、“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.16、3【解析】
在直角三角形中設(shè),,,利用兩角差的正切公式求解.【詳解】設(shè),,則,故.故答案為:3【點睛】此題考查在直角三角形中求角的正切值,關(guān)鍵在于合理構(gòu)造角的和差關(guān)系,其本質(zhì)是利用兩角差的正切公式求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),.(2)見解析【解析】
(1)分三種情況討論即可(2)將,的值代入,然后利用均值定理即可.【詳解】解:(1)不等式可化為.即有或或.解得,或或.所以不等式的解集為,故,.(2)由(1)知,,即,由,得,,當(dāng)且僅當(dāng),即,時等號成立.故,即.【點睛】考查絕對值不等式的解法以及用均值定理證明不等式,中檔題.18、(1)見解析(2)【解析】
(1)首先可得,再面面垂直的性質(zhì)可得平面,即可得到,再由,即可得到線面垂直;(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標(biāo)系,利用空間向量法求出線面角;【詳解】解:(1)∵,點為的中點,∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分別為,的中點,∴,∴,又平面,平面,,∴平面.(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標(biāo)系,∵,∴,,,,∴,,,設(shè)平面的法向量為,由,得,令,得,∴,∴直線與平面所成角的正弦值為.【點睛】本題考查線面垂直的判定,面面垂直的性質(zhì)定理的應(yīng)用,利用空間向量法求線面角,屬于中檔題.19、(1)證明見解析(2)證明見解析【解析】
(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉(zhuǎn)化為,再作差提取公因式論證.(2)由基本不等式得,再用不等式的基本性質(zhì)論證.【詳解】(1)要證,即證,即證,即證,即證,即證,該式顯然成立,當(dāng)且僅當(dāng)時等號成立,故.(2)由基本不等式得,,當(dāng)且僅當(dāng)時等號成立.將上面四式相加,可得,即.【點睛】本題考查證明不等式的方法、基本不等式,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題..20、(1)選取方案二更合適;(2)【解析】
(1)可以預(yù)見,2019年的紙質(zhì)廣告收入會接著下跌,前四年的增長趨勢已經(jīng)不能作為預(yù)測后續(xù)數(shù)據(jù)的依據(jù),而后5年的數(shù)據(jù)得到的相關(guān)系數(shù)的絕對值,所以有的把握認為與具有線性相關(guān)關(guān)系,從而可得結(jié)論;(2)求得購買電子書的概率為,只購買紙質(zhì)書的概率為,購買電子書人數(shù)多于只購買紙質(zhì)書人數(shù)有兩種情況:3人購買電子書,2人購買電子書一人只購買紙質(zhì)書,由此能求出購買電子書人數(shù)多于只購買紙質(zhì)版本人數(shù)的概率.【詳解】(1)選取方案二更合適,理由如下:①題中介紹了,隨著電子閱讀的普及,傳統(tǒng)紙媒受到了強烈的沖擊,從表格中的數(shù)據(jù)中可以看出從2014年開始,廣告收入呈現(xiàn)逐年下降的趨勢,可以預(yù)見,2019年的紙質(zhì)廣告收入會接著下跌,前四年的增長趨勢已經(jīng)不能作為預(yù)測后續(xù)數(shù)據(jù)的依據(jù).②相關(guān)系數(shù)越接近1,線性相關(guān)性越強,因為根據(jù)9年的數(shù)據(jù)得到的相關(guān)系數(shù)的絕對值,我們沒有理由認為與具有線性相關(guān)關(guān)系;而后5年的數(shù)據(jù)得到的相關(guān)系數(shù)的絕對值,所以有的把握認為與具有線性相關(guān)關(guān)系.(2)因為在該網(wǎng)站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質(zhì)版本和電子書同時購買的讀者比例為,所以從該網(wǎng)站購買該書籍的大量讀者中任取一位,購買電子書的概率為,只購買紙質(zhì)書的概率為,購買電子書人數(shù)多于只購買紙質(zhì)書人數(shù)有兩種情況:3人購買電子書,2人購買電子書一人只購買紙質(zhì)書.概率為:.【點睛】本題主要考查最優(yōu)方案的選擇,考查了相關(guān)關(guān)系的定義以及互斥事件的概率與獨立事件概率公式的應(yīng)用,考查閱讀能力與運算求解能力,屬于中檔題.與實際應(yīng)用相結(jié)合的題型也是高考命題的動向,這類問題的特點是通過現(xiàn)實生活的事例考查書本知識,解決這類問題的關(guān)鍵是耐心讀題、仔細理解題,只有吃透題意,才能將實際問題轉(zhuǎn)化為數(shù)學(xué)模型進行解答.21、(1)證明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)委托貸款服務(wù)協(xié)議:2024擔(dān)保公司版版B版
- 2024年項目融資顧問服務(wù)協(xié)議模板版B版
- 2024建筑工程設(shè)計、施工與材料供應(yīng)合同
- 2025年度倉儲物流中心場地租賃管理服務(wù)協(xié)議2篇
- 福建省南平市五夫中學(xué)2020-2021學(xué)年高一物理模擬試卷含解析
- 福建省南平市太平中學(xué)2021年高二英語聯(lián)考試題含解析
- 2025年度產(chǎn)業(yè)園區(qū)廠房租賃及配套設(shè)施管理協(xié)議3篇
- 2024年度高端商場專用擋煙垂壁施工合同3篇
- 增加項目合同(2篇)
- 2024無錫江陰跨境電商合作合同
- 三年級上冊數(shù)學(xué)脫式計算練習(xí)300題附答案
- 2024年公務(wù)員考試新疆維吾爾新疆生產(chǎn)建設(shè)兵團圖木舒克市《行政職業(yè)能力測驗》全真模擬試卷含解析
- 死因監(jiān)測工作總結(jié)
- 2024年中國華融資產(chǎn)管理股份有限公司招聘筆試參考題庫含答案解析
- 人教版數(shù)學(xué)四年級下冊全冊各單元教材解讀教材解析
- 義務(wù)教育化學(xué)課程標(biāo)準(zhǔn)2022年
- 前端開發(fā)入門教程
- 護理給藥制度課件
- 變電站模塊化建設(shè)2.0版技術(shù)導(dǎo)則
- 道路交通安全隱患排查整治行動全面展開
- GB/T 13296-2023鍋爐、熱交換器用不銹鋼無縫鋼管
評論
0/150
提交評論