北京市文江中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第1頁
北京市文江中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第2頁
北京市文江中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第3頁
北京市文江中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第4頁
北京市文江中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北京市文江中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列中,,則()A.15 B.30C.45 D.602.如圖所示,已知是橢圓的左、右焦點(diǎn),為橢圓的上頂點(diǎn),在軸上,,且是的中點(diǎn),為坐標(biāo)原點(diǎn),若點(diǎn)到直線的距離為3,則橢圓的方程為()A B.C. D.3.已知不等式解集為,下列結(jié)論正確的是()A. B.C D.4.已知四棱錐,平面PAB,平面PAB,底面ABCD是梯形,,,,滿足上述條件的四棱錐的頂點(diǎn)P的軌跡是()A.橢圓 B.橢圓的一部分C.圓 D.不完整的圓5.直線的方向向量為()A. B.C. D.6.將5名北京冬奧會(huì)志愿者分配到花樣滑冰、短道速滑、冰球和冰壺4個(gè)項(xiàng)目進(jìn)行培訓(xùn),每名志愿者只分配到1個(gè)項(xiàng)目,每個(gè)項(xiàng)目至少分配1名志愿者,則不同的分配方案共有()A.60種 B.120種C.240種 D.480種7.已知為虛數(shù)單位,復(fù)數(shù)是純虛數(shù),則()A B.4C.3 D.28.圓的圓心為()A. B.C. D.9.已知長(zhǎng)方體的底面ABCD是邊長(zhǎng)為8的正方形,長(zhǎng)方體的高為,則與對(duì)角面夾角的正弦值等于()A. B.C. D.10.已知函數(shù)在處取得極小值,則()A. B.C. D.11.如圖,D是正方體的一個(gè)“直角尖”O(jiān)-ABC(OA,OB,OC兩兩垂直且相等)棱OB的中點(diǎn),P是BC中點(diǎn),Q是AD上的一個(gè)動(dòng)點(diǎn),連PQ,則當(dāng)AC與PQ所成角為最小時(shí),()A. B.C. D.212.設(shè),,,則,,大小關(guān)系是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是雙曲線上的一點(diǎn),是上的兩個(gè)焦點(diǎn),若,則的取值范圍是_______________14.雙曲線的離心率為__________15.已知等比數(shù)列的前項(xiàng)和為,若,,則______.16.已知數(shù)列前項(xiàng)和為,且,則_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:,過點(diǎn)且斜率為k的直線與拋物線C相交于P,Q兩點(diǎn).(1)設(shè)點(diǎn)B在x軸上,分別記直線PB,QB的斜率為.若,求點(diǎn)B的坐標(biāo);(2)過拋物線C的焦點(diǎn)F作直線PQ的平行線與拋物線C相交于M,N兩點(diǎn),求的值.18.(12分)已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為,過點(diǎn)的直線與拋物線只有一個(gè)公共點(diǎn).(1)求拋物線的方程;(2)求直線的方程.19.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)在上的最大值和最小值.20.(12分)如圖,四棱臺(tái)的底面為正方形,面,(1)求證:平面;(2)若平面平面,求直線m與平面所成角的正弦值21.(12分)設(shè)命題p:實(shí)數(shù)x滿足,其中;命題q:若,且為真,求實(shí)數(shù)x的取值范圍;若是的充分不必要條件,求實(shí)數(shù)m的取值范圍22.(10分)在二項(xiàng)式的展開式中,______.給出下列條件:①若展開式前三項(xiàng)的二項(xiàng)式系數(shù)的和等于46;②所有奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)的和為256.試在上面兩個(gè)條件中選擇一個(gè)補(bǔ)充在上面的橫線上,并解答下列問題:(1)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng);(2)求展開式的常數(shù)項(xiàng).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)等差數(shù)列的性質(zhì),可知,從而可求出結(jié)果.【詳解】解:根據(jù)題意,可知等差數(shù)列中,,則,所以.故選:D.2、D【解析】由題設(shè)可得,直線的方程為,點(diǎn)線距離公式表示到直線的距離,又聯(lián)立解得即可得出答案.【詳解】且,則△是等邊三角形,設(shè),則①,∴直線方程為,即,∴到直線的距離為②,又③,聯(lián)立①②③,解得,,故橢圓方程為.故選:D.3、C【解析】根據(jù)不等式解集為,得方程解為或,且,利用韋達(dá)定理即可將用表示,即可判斷各選項(xiàng)的正誤.【詳解】解:因?yàn)椴坏仁浇饧癁?,所以方程的解為或,且,所以,所以,所以,故ABD錯(cuò)誤;,故C正確.故選:C.4、D【解析】根據(jù)題意,分析得動(dòng)點(diǎn)滿足的條件,結(jié)合圓以及橢圓的方程,以及點(diǎn)的限制條件,即可判斷軌跡.【詳解】因?yàn)槠矫鍼AB,平面PAB,則//,又面面,故可得;因?yàn)?,故可得,則,綜上所述:動(dòng)點(diǎn)在垂直的平面中,且滿足;為方便研究,不妨建立平面直角坐標(biāo)系進(jìn)行說明,在平面中,因?yàn)?,以中點(diǎn)為坐標(biāo)原點(diǎn),以為軸,過且垂直于的直線為軸建立平面直角坐標(biāo)系,如下所示:因?yàn)?,故可得,整理得:,故?dòng)點(diǎn)的軌跡是一個(gè)圓;又當(dāng)三點(diǎn)共線時(shí),幾何體不是空間幾何體,故動(dòng)點(diǎn)的軌跡是一個(gè)不完整的圓.故選:.【點(diǎn)睛】本題考察立體幾何中動(dòng)點(diǎn)的軌跡問題,處理的關(guān)鍵是利用立體幾何知識(shí),找到動(dòng)點(diǎn)滿足的條件,進(jìn)而求解軌跡.5、D【解析】根據(jù)直線方程,求得斜率k,分析即可得直線的方向向量.【詳解】直線變形可得,所以直線的斜率,所以向量為直線的一個(gè)方向向量,因?yàn)?,所以向量為直線的方向向量,故選:D6、C【解析】先確定有一個(gè)項(xiàng)目中分配2名志愿者,其余各項(xiàng)目中分配1名志愿者,然后利用組合,排列,乘法原理求得.【詳解】根據(jù)題意,有一個(gè)項(xiàng)目中分配2名志愿者,其余各項(xiàng)目中分配1名志愿者,可以先從5名志愿者中任選2人,組成一個(gè)小組,有種選法;然后連同其余三人,看成四個(gè)元素,四個(gè)項(xiàng)目看成四個(gè)不同的位置,四個(gè)不同的元素在四個(gè)不同的位置的排列方法數(shù)有4!種,根據(jù)乘法原理,完成這件事,共有種不同的分配方案,故選:C.【點(diǎn)睛】本題考查排列組合的應(yīng)用問題,屬基礎(chǔ)題,關(guān)鍵是首先確定人數(shù)的分配情況,然后利用先選后排思想求解.7、C【解析】化簡(jiǎn)復(fù)數(shù)得,由其為純虛數(shù)求參數(shù)a,進(jìn)而求的模即可.【詳解】由為純虛數(shù),∴,解得:,則,故選:C8、D【解析】由圓的標(biāo)準(zhǔn)方程求解.【詳解】圓的圓心為,故選:D9、A【解析】建立空間直角坐標(biāo)系,結(jié)合空間向量的夾角坐標(biāo)公式即可求出線面角的正弦值.【詳解】連接,建立如圖所示的空間直角坐標(biāo)系∵底面是邊長(zhǎng)為8的正方形,,∴,,,因?yàn)?且,所以平面,∴,平面的法向量,∴與對(duì)角面所成角的正弦值為故選:A.10、A【解析】由導(dǎo)數(shù)與極值與最值的關(guān)系,列式求實(shí)數(shù)的值.【詳解】由條件可知,,,解得:,,檢驗(yàn),時(shí),當(dāng),得或,函數(shù)的單調(diào)遞增區(qū)間是和,當(dāng),得,所以函數(shù)的單調(diào)遞減區(qū)間是,所以當(dāng)時(shí),函數(shù)取得極小值,滿足條件.所以.故選:A11、C【解析】根據(jù)題意,建立空間直角坐標(biāo)系,求得AC與PQ夾角的余弦值關(guān)于點(diǎn)坐標(biāo)的函數(shù)關(guān)系,求得角度最小時(shí)點(diǎn)的坐標(biāo),即可代值計(jì)算求解結(jié)果.【詳解】根據(jù)題意,兩兩垂直,故以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系如下所示:設(shè),則,不妨設(shè)點(diǎn)的坐標(biāo)為,則,,則,又,設(shè)直線所成角為,則,則,令,令,則,令,則,此時(shí).故當(dāng)時(shí),取得最大值,此時(shí)最小,點(diǎn),則,故,則故選:C.12、A【解析】構(gòu)造函數(shù),根據(jù)的單調(diào)性可得(3),從而得到,,的大小關(guān)系【詳解】考查函數(shù),則,在上單調(diào)遞增,,(3),即,,故選:【點(diǎn)睛】本題考查了利用函數(shù)的單調(diào)性比較大小,考查了構(gòu)造法和轉(zhuǎn)化思想,屬基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意,,.故答案為.14、【解析】∵雙曲線的方程為∴,∴∴故答案為15、【解析】設(shè)等比數(shù)列的公比為,根據(jù)已知條件求出的值,由此可得出的值.【詳解】設(shè)等比數(shù)列的公比為,則,整理可得,,解得,因此,.故答案為:.16、,.【解析】由的遞推關(guān)系,討論、求及,注意驗(yàn)證是否滿足通項(xiàng),即可寫出的通項(xiàng)公式.【詳解】當(dāng)時(shí),,當(dāng)且時(shí),,而,即也滿足,∴,.故答案為:,.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)直線的方程為,其中,聯(lián)立直線與拋物線方程,由韋達(dá)定理結(jié)合已知條件可求得點(diǎn)的坐標(biāo);(2)直線的方程為,利用傾斜角定義知,,聯(lián)立直線與拋物線方程,利用弦長(zhǎng)公式求得,進(jìn)而得解.小問1詳解】由題意,直線的方程為,其中.設(shè),聯(lián)立,消去得..,,即.,即.,,∴點(diǎn)的坐標(biāo)為.【小問2詳解】由題意,直線的方程為,其中,為傾斜角,則,設(shè).聯(lián)立,消去得...18、(1);(2)或或.【解析】(1)根據(jù)給定條件結(jié)合p的幾何意義,直接求出p寫出方程作答.(2)直線l的斜率存在設(shè)出其方程,再與拋物線C的方程聯(lián)立,再討論計(jì)算,l斜率不存在時(shí)驗(yàn)證作答.【小問1詳解】因拋物線的焦點(diǎn)到準(zhǔn)線的距離為,于是得,所以拋物線的方程為.【小問2詳解】當(dāng)直線的斜率存在時(shí),設(shè)直線為,由消去y并整理得:,當(dāng)時(shí),,點(diǎn)是直線與拋物線唯一公共點(diǎn),因此,,直線方程為,當(dāng)時(shí),,此時(shí)直線與拋物線相切,直線方程為,當(dāng)直線的斜率不存在時(shí),y軸與拋物線有唯一公共點(diǎn),直線方程為,所以直線方程為為或或.19、(1)單調(diào)增區(qū)間,單調(diào)減區(qū)間(2)最大值,最小值【解析】根據(jù)導(dǎo)函數(shù)分析函數(shù)單調(diào)性,在閉區(qū)間內(nèi)的最值【小問1詳解】時(shí),;時(shí),單調(diào)增區(qū)間,單調(diào)減區(qū)間【小問2詳解】由(1)可知,在上單調(diào)遞增,在上單調(diào)遞減,所以最大值為又;故最小值為020、(1)證明見解析;(2).【解析】(1):連結(jié)交交于點(diǎn)O,連結(jié),,通過四棱臺(tái)的性質(zhì)以及給定長(zhǎng)度證明,從而證出,利用線面平行的判定定理可證明面;(2)利用線面平行的性質(zhì)定理以及基本事實(shí)可證明,即求與平面所成角的正弦值;通過條件以及面面垂直的判定定理可證明面面,則為與平面所成角,利用余弦定理求出余弦值,即可求出正弦值.【詳解】(1)證明:連結(jié)交交于點(diǎn)O,連結(jié),,由多面體為四棱臺(tái)可知四點(diǎn)共面,且面面,面面,面面,∴,∵和均為正方形,,∴,所以為平行四邊形,∴,面,面,∴平面(2)∵面,平面,平面,∴,又∵,∴∴求直線m與平面所成角可轉(zhuǎn)化為求與平面所成角,∵和均為正方形,,且,∴,,∴,又∵面,∴∴面,∴面面,由面面,設(shè)O在面的投影為M,則,∴為與平面所成角,由,可得,又∵,∴∴,直線m與平面所成角的正弦值為.【點(diǎn)睛】思路點(diǎn)睛:(1)找兩個(gè)平面的交線,可通過兩個(gè)平面的交點(diǎn)找到,也可利用線面平行的性質(zhì)找和交線的平行直線;(2)求直線和平面所成角,過直線上一點(diǎn)做平面的垂線,則垂足和斜足連線與直線所成角即為直線和平面所成角.21、(1)(2)【解析】解二次不等式,其中解得,解得:,取再求交集即可;寫出命題所對(duì)應(yīng)的集合,命題p:,命題q:,由是的充分不必要條件,即p是q的充分不必要條件,則A是B的真子集,列不等式組可求解【詳解】解:(1)由,其中;解得,又,即,由得:,又為真,則,得:,故實(shí)數(shù)x的取值范圍為;由得:命題p:,命題q:,由是的充分不必要條件,即p是q的充分不必要條件,A是B的真子集,所以,即故實(shí)數(shù)m取值范圍為:.【點(diǎn)睛】本題考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論