版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
寶坻區(qū)第一中學2025屆高二數(shù)學第一學期期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.年1月初,中國多地出現(xiàn)散發(fā)病例甚至局部聚集性疫情,在此背景下,各地陸續(xù)發(fā)出“春節(jié)期間非必要不返鄉(xiāng)”的倡議,鼓勵企事業(yè)單位職工就地過年.某市針對非本市戶籍并在本市繳納社保,且春節(jié)期間在本市過年的外來務工人員,每人發(fā)放1000元疫情專項補貼.小張是該市的一名務工人員,則“他在該市過年”是“他可領取1000元疫情專項補貼”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.若關于一元二次不等式的解集為,則實數(shù)的取值范圍是()A. B.C. D.3.函數(shù)的導函數(shù)為,若已知圖象如圖,則下列說法正確的是()A.存在極大值點 B.在單調(diào)遞增C.一定有最小值 D.不等式一定有解4.已知平面向量,且,向量滿足,則的最小值為()A. B.C. D.5.已知等差數(shù)列的前n項和為,且,,則為()A. B.C. D.6.已知圓,為圓外的任意一點,過點引圓的兩條切線、,使得,其中、為切點.在點運動的過程中,線段所掃過圖形的面積為()A. B.C. D.7.已知向量是兩兩垂直的單位向量,且,則()A.5 B.1C.-1 D.78.已知直線交圓于A,B兩點,若點滿足,則直線l被圓C截得線段的長是()A.3 B.2C. D.49.《米老鼠和唐老鴨》這部動畫給我們的童年帶來了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個圓構(gòu)成米奇的簡筆畫形象.已知3個圓方程分別為:圓圓,圓若過原點的直線與圓、均相切,則截圓所得的弦長為()A B.C. D.10.已知數(shù)列滿足:,數(shù)列的前n項和為,若恒成立,則的取值范圍是()A. B.C. D.11.已知橢圓上的一點到橢圓一個焦點的距離為3,則點到另一焦點的距離為()A.1 B.3C.5 D.712.設為等差數(shù)列的前項和,若,,則公差的值為()A. B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.若橢圓W:的離心率是,則m=___________.14.已知正數(shù)、滿足,則的最大值為__________15.設等差數(shù)列{an}的前n項和為Sn,且S2020>0,S2021<0,則當n=_____________時,Sn最大.16.平面內(nèi)n條直線兩兩相交,且任意三條直線不過同一點,將其交點個數(shù)記為,若規(guī)定,則,,_________,_________,(用含n的式子表示)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知點,,過點的動直線與過點的動直線的交點為P,,的斜率均存在且乘積為,設動點Р的軌跡為曲線C.(1)求曲線C的方程;(2)若點M在曲線C上,過點M且垂直于OM的直線交C于另一點N,點M關于原點O的對稱點為Q.直線NQ交x軸于點T,求的最大值.18.(12分)一個小島的周圍有環(huán)島暗礁,暗礁分布在以小島中心為圓心,半徑為的圓形區(qū)域內(nèi)(圓形區(qū)域的邊界上無暗礁),已知小島中心位于輪船正西處,港口位于小島中心正北處.(1)若,輪船直線返港,沒有觸礁危險,求的取值范圍?(2)若輪船直線返港,且必須經(jīng)過小島中心東北方向處補水,求的最小值.19.(12分)已知數(shù)列滿足,.(1)求證數(shù)列是等差數(shù)列,并求通項公式;(2)已知數(shù)列的前項和為,求.20.(12分)設數(shù)列的前項和為,已知,且.(1)證明:數(shù)列為等比數(shù)列;(2)若,是否存在正整數(shù),使得對任意恒成立?若存在、求的值;若不存在,說明理由.21.(12分)某初中學校響應“雙減政策”,積極探索減負增質(zhì)舉措,優(yōu)化作業(yè)布置,減少家庭作業(yè)時間.現(xiàn)為調(diào)查學生的家庭作業(yè)時間,隨機抽取了名學生,記錄他們每天完成家庭作業(yè)的時間(單位:分鐘),將其分為,,,,,六組,其頻率分布直方圖如下圖:(1)求的值,并估計這名學生完成家庭作業(yè)時間的中位數(shù)(中位數(shù)結(jié)果保留一位小數(shù));(2)現(xiàn)用分層抽樣的方法從第三組和第五組中隨機抽取名學生進行“雙減政策”情況訪談,再從訪談的學生中選取名學生進行成績跟蹤,求被選作成績跟蹤的名學生中,第三組和第五組各有名的概率22.(10分)已知橢圓的上頂點在直線上,點在橢圓上.(1)求橢圓C的方程;(2)點P,Q在橢圓C上,且,,點G為垂足,是否存在定圓恒經(jīng)過A,G兩點,若存在,求出圓的方程;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)充分條件、必要條件的定義進行判定.【詳解】只有非本市戶籍并在本市繳納社保的外來務工人員就地過年,才可領取1000元疫情專項補貼,小張是該市的一名務工人員,但他可能是本市戶籍或非本市戶籍但在本市未繳納社保,所以“他在該市過年”是“他可領取1000元疫情專項補貼”的必要不充分條件.故選:B.2、B【解析】結(jié)合判別式求得的取值范圍.【詳解】由于關于的一元二次不等式的解集為,所以,解得,所以實數(shù)的取值范圍是.故選:B3、C【解析】根據(jù)圖象可得的符號,從而可得的單調(diào)區(qū)間,再對選項進行逐一分析判斷正誤得出答案.【詳解】由所給的圖象,可得當時,,當時,,當時,,當時,,可得在遞減,遞增;在遞減,在遞增,B錯誤,且知,所以存在極小值和,無極大值,A錯誤,同時無論是否存在,可得出一定有最小值,但是最小值不一定為負數(shù),故C正確,D錯誤.故選:C.4、B【解析】由題設可得,又,易知,,將問題轉(zhuǎn)化為平面點線距離關系:向量的終點為圓心,1為半徑的圓上的點到向量所在射線的距離最短,即可求的最小值.【詳解】解:∵,而,∴,又,即,又,,∴,若,則,∴在以為圓心,1為半徑的圓上,若,則,∴問題轉(zhuǎn)化為求在圓上的哪一點時,使最小,又,∴當且僅當三點共線且時,最小為.故選:B.【點睛】關鍵點點睛:由已知確定,,構(gòu)成等邊三角形,即可將問題轉(zhuǎn)化為圓上動點到射線的距離最短問題.5、C【解析】直接由等差數(shù)列求和公式結(jié)合,求出,再由求和公式求出即可.【詳解】由題意知:,解得,則.故選:C.6、D【解析】連接、、,分析可知四邊形為正方形,求出點的軌跡方程,分析可知線段所掃過圖形為是夾在圓和圓的圓環(huán),利用圓的面積公式可求得結(jié)果.【詳解】連接、、,由圓的幾何性質(zhì)可知,,又因為且,故四邊形為正方形,圓心,半徑為,則,故點的軌跡方程為,所以,線段掃過的圖形是夾在圓和圓的圓環(huán),故在點運動的過程中,線段所掃過圖形的面積為.故選:D.7、B【解析】根據(jù)單位向量的定義和向量的乘法運算計算即可.【詳解】因為向量是兩兩垂直的單位向量,且所以.故選:B8、B【解析】由題設知為圓的圓心且A、B在圓上,根據(jù)已知及向量數(shù)量積的定義求的大小,進而判斷△的形狀,即可得直線l被圓C截得線段的長.【詳解】∵點為圓的圓心且A、B在圓上,又,∴,∴,又,∴,故△為等邊三角形,∴直線l被圓C截得線段的長是2故選:B9、A【解析】設直線,利用直線與圓相切,求得斜率,再利用弦長公式求弦長【詳解】設過點的直線.由直線與圓、圓均相切,得解得(1).設點到直線的距離為則(2).又圓的半徑直線截圓所得弦長結(jié)合(1)(2)兩式,解得10、D【解析】由于,所以利用裂項相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價于,即恒成立,化簡得到,因為,當且僅當,即時取等號,所以故選:D11、D【解析】由橢圓的定義可以直接求得點到另一焦點的距離.【詳解】設橢圓的左、右焦點分別為、,由已知條件得,由橢圓定義得,其中,則.故選:.12、C【解析】根據(jù)等差數(shù)列前項和公式進行求解即可.【詳解】,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】按照橢圓的焦點在軸和在軸上兩種情況分別求解,可得所求結(jié)果【詳解】①當橢圓的焦點在軸上時,則有,由題意得,解得②當橢圓的焦點在軸上時,則有,由題意得,解得綜上可得或故答案為或【點睛】解答本題的關鍵有兩個:一個是注意分類討論思想方法的運用,注意橢圓焦點所在的位置;二是解題時要分清橢圓方程中各個參數(shù)的幾何意義,然后再根據(jù)離心率的定義求解14、【解析】直接利用均值不等式得到答案.【詳解】,當即時等號成立.故答案為【點睛】本題考查了均值不等式,意在考查學生的計算能力.15、1010【解析】先由S2020>0,S2021<0,判斷出,,即可得到答案.【詳解】等差數(shù)列{an}的前n項和為,所以,因為1+2020=1010+1011,所以,所以.,所以,所以當n=1010時,Sn最大.故答案為:1010.16、①.6;②..【解析】利用第條直線與前條直線相交有個交點得出與的關系后可得結(jié)論【詳解】第4條直線與前三條直線有3個交點,因此,同理,由此得到第條直線與前條直線相交有個交點,所以,即所以故答案為:6;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設點坐標為,根據(jù)兩直線的斜率之積為得到方程,整理即可;(2)設,,,根據(jù)設、在橢圓上,則,再由,則,即可表示出直線、的方程,聯(lián)立兩直線方程,即可得到點的縱坐標,再根據(jù)弦長公式得到,令,則,最后利用基本不等式計算可得;【小問1詳解】解:設點坐標為,定點,,直線與直線的斜率之積為,,【小問2詳解】解:設,,,則,,所以又,所以,又即,則直線:,直線:,由,解得,即,所以令,則,所以因為,當且僅當即時取等號,所以的最大值為;18、(1)(2)120【解析】(1)建立平面直角坐標系設直線方程,根據(jù)點到直線的距離公式可得;(2)先求補水點的坐標,根據(jù)直線過該點,結(jié)合所求,根據(jù)基本不等式可得.【小問1詳解】根據(jù)題意,以小島中心為原點,建立平面直角坐標系,當時,則輪船返港的直線為,因為沒有觸礁危險,所以原點到的距離,解得.【小問2詳解】根據(jù)題意可得,,點C在直線上,故點C,設輪船返港的直線是,則,所以.當且僅當時取到最小值.19、(1)證明見詳解,(2)【解析】(1)由題意將原式化簡變形得到,可證明數(shù)列是等差數(shù)列,由等差數(shù)列的通項公式則可得,進而得到的通項公式;(2)由(1)把的通項公式代入,得到,利用乘公比錯位相減法求和即可.【小問1詳解】若,則,這與矛盾,,由已知得,,故數(shù)列是以為首項,2為公差的等差數(shù)列,,即.【小問2詳解】設,則由(1)知,所以,,兩式相減,則,所以.20、(1)證明見解析(2)【解析】(1)由已知條件有,根據(jù)等比數(shù)列的定義即可證明;(2)由(1)求出及,進而可得,利用二次函數(shù)的性質(zhì)即可求解的最小值,從而可得答案.【小問1詳解】證明:因為,所以,又因為,所以,所以數(shù)列是首項為2公比為2的等比數(shù)列;【小問2詳解】解:由(1)知,,所以,所以,檢驗時也滿足上式,所以,所以,令,所以,故當即時,取得最小值,所以.21、(1);這名學生完成家庭作業(yè)時間的中位數(shù)約為分鐘(2)【解析】(1)由頻率分布直方圖頻率之和為,建立方程求解即可;設中位數(shù)為,利用頻率分布直方圖中位數(shù)定義列出方程即可求解;(2)頻率分布直方圖頻率得到第三組和第五組的人數(shù),從而列出所有樣本點,再根據(jù)題意利用古典概率模型求解即可.【小問1詳解】根據(jù)頻率分布直方圖可得:,解得.設中位數(shù)為,由題意得,解得所以這名學生完成家庭作業(yè)時間的中位數(shù)約為分鐘【小問2詳解】由頻率分布直方圖知,第三組和第五組的人數(shù)之比為,所以分層抽樣抽出的人中,第三組和第五組的人數(shù)分別為人和人,第三組的名學生記為,,,,第五組的名學生記為,,所以從名學生中抽取名的樣本空間,共15個樣本點,記事件“名中學生,第三組和第五組各名”則,共有個樣本點,所以這名學生中,兩組各有名的概率22、(1);(2)存在,定圓.【解析】(1)由題可得,,即求;(2)由題可設直線的方程,利用韋達定理及條件可得直線恒過定點,則以為直徑的圓適合題意,即得.【小問1詳解】由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 利用信息化手段提高小學語文教育中的德育效果研究
- 2024年度金融資產(chǎn)抵押權(quán)人信用擔保合同3篇
- 2024年物聯(lián)網(wǎng)設備研發(fā)與集成服務合同
- 2025中國科學院沈陽應用生態(tài)研究所崗位公開招聘1人(遼寧)高頻重點提升(共500題)附帶答案詳解
- 2025中國石化石油工程地球物理限公司畢業(yè)生招聘35人高頻重點提升(共500題)附帶答案詳解
- 2025中國民用航空西南地區(qū)空中交通管理局貴州分局應屆畢業(yè)生招聘11人高頻重點提升(共500題)附帶答案詳解
- 2025中國大唐集團江西分公司所屬企業(yè)招聘12人高頻重點提升(共500題)附帶答案詳解
- 2025中國農(nóng)業(yè)科學院作物科學研究所大豆基因資源創(chuàng)新研究組科研助理公開招聘2人高頻重點提升(共500題)附帶答案詳解
- 2025下學期廣東廣州工商學院輔導員招聘4人高頻重點提升(共500題)附帶答案詳解
- 2025下半年廣東省東莞市事業(yè)單位歷年高頻重點提升(共500題)附帶答案詳解
- 古建工程監(jiān)理規(guī)劃范本
- 醫(yī)療質(zhì)量管理工具課件
- 2023年上海市閔行區(qū)中心醫(yī)院住院醫(yī)師規(guī)范化培訓招生(口腔科)考試參考題庫+答案
- 單肺通氣中的麻醉管理
- 建筑施工安全檢查標準jgj59-2023
- 2023-2024學年江蘇省高郵市小學數(shù)學六年級上冊期末通關考試題
- GB/T 7631.5-1989潤滑劑和有關產(chǎn)品(L類)的分類第5部分:M組(金屬加工)
- GB/T 40428-2021電動汽車傳導充電電磁兼容性要求和試驗方法
- 中國人民大學組織行為管理學
- 七年級下冊道德與法治復習資料
- 奧齒泰-工具盒使用精講講解學習課件
評論
0/150
提交評論