版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省十四校聯(lián)考2025屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若等軸雙曲線C過點,則雙曲線C的頂點到其漸近線的距離為()A.1 B.C. D.22.拋物線的焦點為,準(zhǔn)線為,焦點在準(zhǔn)線上的射影為點,過任作一條直線交拋物線于兩點,則為()A.銳角 B.直角C.鈍角 D.銳角或直角3.已知命題p:,,則命題p的否定為()A., B.,C., D.,4.在正方體中,下列幾種說法不正確的是A. B.B1C與BD所成的角為60°C.二面角的平面角為 D.與平面ABCD所成的角為5.某學(xué)習(xí)小組研究一種衛(wèi)星接收天線(如圖①所示),發(fā)現(xiàn)其曲面與軸截面的交線為拋物線,在軸截面內(nèi)的衛(wèi)星波束呈近似平行狀態(tài)射入形為拋物線的接收天線,經(jīng)反射聚焦到焦點處(如圖②所示).已知接收天線的口徑(直徑)為3.6m,深度為0.6m,則該拋物線的焦點到頂點的距離為()A.1.35m B.2.05mC.2.7m D.5.4m6.已知等比數(shù)列中,,,則首項()A. B.C. D.07.中,,,分別為三個內(nèi)角,,的對邊,若,,,則()A. B.C. D.8.在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于()A.40 B.42C.43 D.459.下列語句為命題的是()A. B.你們好!C.下雨了嗎? D.對頂角相等10.已知雙曲線C:-=1的焦距為10,點P(2,1)在C的漸近線上,則C的方程為A.-=1 B.-=1C.-=1 D.-=111.已知為等差數(shù)列,為其前n項和,,則下列和與公差無關(guān)的是()A. B.C. D.12.直線與直線交于點Q,m是實數(shù),O為坐標(biāo)原點,則的最大值是()A.2 B.C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線C:的一個焦點坐標(biāo)為,則其漸近線方程為__________14.已知數(shù)列滿足,,則______.15.萬眾矚目的北京冬奧會將于2022年2月4日正式開幕,繼2008年北京奧運會之后,國家體育場(又名鳥巢)將再次承辦奧運會開幕式.在手工課上,王老師帶領(lǐng)同學(xué)們一起制作了一個近似鳥巢的金屬模型,其俯視圖可近似看成是兩個大小不同、扁平程度相同的橢圓.已知大橢圓的長軸長為40cm,短軸長為20cm,小橢圓的短軸長為10cm,則小橢圓的長軸長為________cm.16.如圖,E,F(xiàn)分別是三棱錐的棱AD,BC的中點,,,,則異面直線AB與EF所成的角為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直三棱柱中,、、、分別為中點,.(1)求證:平面(2)求二面角的余弦值18.(12分)如圖,四棱錐P-ABCD中,PA平面ABCD,,∠BAD=120o,AB=AD=2,點M在線段PD上,且DM=2MP,平面(1)求證:平面MAC平面PAD;(2)若PA=6,求平面PAB和平面MAC所成銳二面角的余弦值19.(12分)已知橢圓的上頂點在直線上,點在橢圓上.(1)求橢圓C的方程;(2)點P,Q在橢圓C上,且,,點G為垂足,是否存在定圓恒經(jīng)過A,G兩點,若存在,求出圓的方程;若不存在,請說明理由.20.(12分)等比數(shù)列中,,(1)求的通項公式;(2)記為的前n項和.若,求m的值21.(12分)已知直線過點(1)若直線與直線垂直,求直線的方程;(2)若直線在兩坐標(biāo)軸的截距相等,求直線的方程22.(10分)已知橢圓的左、右焦點分別為,離心率為,圓:過橢圓的三個頂點,過點的直線(斜率存在且不為0)與橢圓交于兩點(1)求橢圓的標(biāo)準(zhǔn)方程(2)證明:在軸上存在定點,使得為定值,并求出定點的坐標(biāo)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】先求出雙曲線C的標(biāo)準(zhǔn)方程,再求頂點到其漸近線的距離.【詳解】設(shè)等軸雙曲線C的標(biāo)準(zhǔn)方程為,因為點在雙曲線上,所以,解得,所以雙曲線C的標(biāo)準(zhǔn)方程為,故上頂點到其一條漸近線的距離為.故選:A2、D【解析】設(shè)出直線方程,聯(lián)立拋物線方程,利用韋達(dá)定理,求得,根據(jù)其結(jié)果即可判斷和選擇.【詳解】為說明問題,不妨設(shè)拋物線方程,則,直線斜率顯然不為零,故可設(shè)直線方程為,聯(lián)立,可得,設(shè)坐標(biāo)為,則,故,當(dāng)時,,;當(dāng)時,,;故為銳角或直角.故選:D.3、D【解析】根據(jù)全稱命題與存在性命題的關(guān)系,準(zhǔn)確改寫,即可求解.【詳解】根據(jù)全稱命題與存在性命題的關(guān)系可得:命題“p:,”的否定式為“,”.故選:D.4、D【解析】在正方體中,利用線面關(guān)系逐一判斷即可.【詳解】解:對于A,連接AC,則AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正確;對于B,∵B1C∥D,即B1C與BD所成的角為∠DB,連接△DB為等邊三角形,∴B1C與BD所成的角為60°,故B正確;對于C,∵BC⊥平面A1ABB1,A1B?平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B?平面A1BC,AB?平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正確;對于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1與平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D錯誤故選D【點睛】本題考查了線面的空間位置關(guān)系及空間角,做出圖形分析是關(guān)鍵,考查推理能力與空間想象能力5、A【解析】根據(jù)題意先建立恰當(dāng)?shù)淖鴺?biāo)系,可設(shè)出拋物線方程,利用已知條件得出點在拋物線上,代入方程求得p值,進(jìn)而求得焦點到頂點的距離.【詳解】如圖所示,在接收天線的軸截面所在平面上建立平面直角坐標(biāo)系xOy,使接收天線的頂點(即拋物線的頂點)與原點O重合,焦點F在x軸上設(shè)拋物線的標(biāo)準(zhǔn)方程為,由已知條件可得,點在拋物線上,所以,解得,因此,該拋物線的焦點到頂點的距離為1.35m,故選:A.6、B【解析】設(shè)等比數(shù)列的公比為q,根據(jù)等比數(shù)列的通項公式,列出方程組,即可求得,進(jìn)而可求得答案.【詳解】設(shè)等比數(shù)列公比為q,則,解得,所以.故選:B7、C【解析】利用正弦定理求解即可.【詳解】,,,由正弦定理可得,解得,故選:C.8、B【解析】根據(jù)已知求出公差即可得出.【詳解】設(shè)等差數(shù)列的公差為,因為,,所以,則.故選:B.9、D【解析】根據(jù)命題的定義判斷即可.【詳解】因為能夠判斷真假的語句叫作命題,所以ABC錯誤,D正確.故選:D10、A【解析】由題意得,雙曲線的焦距為,即,又雙曲線的漸近線方程為,點在的漸近線上,所以,聯(lián)立方程組可得,所以雙曲線的方程為考點:雙曲線的標(biāo)準(zhǔn)方程及簡單的幾何性質(zhì)11、C【解析】依題意根據(jù)等差數(shù)列的通項公式可得,再根據(jù)等差數(shù)列前項和公式計算可得;【詳解】解:因為,所以,即,所以,,,,故選:C12、B【解析】求出兩直線的交點坐標(biāo),結(jié)合兩點間的距離公式得到,進(jìn)而可以求出結(jié)果.【詳解】因為與的交點坐標(biāo)為所以,當(dāng)時,,所以的最大值是,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)雙曲線的定義由焦點坐標(biāo)求出,即可得到雙曲線方程,從而得到其漸近線方程;【詳解】解:因為雙曲線C:的一個焦點坐標(biāo)為,即,,又,所以,所以雙曲線方程為,所以雙曲線的漸近線為;故答案為:14、1023【解析】由數(shù)列遞推公式求特定項,依次求下去即可解決.【詳解】數(shù)列中,則,,,,,,故答案為:102315、20【解析】求出大橢圓的離心率等于小橢圓的離心率,然后求解小橢圓的長軸長【詳解】在大橢圓中,,,則,.因為兩橢圓扁平程度相同,所以離心率相等,所以在小橢圓中,,結(jié)合,得,所以小橢圓的長軸長為20.故填:20.【點睛】本題考查橢圓的簡單性質(zhì)的應(yīng)用,對橢圓相似則離心率相等這一基礎(chǔ)知識的考查16、【解析】取的中點,連結(jié),由分別為的中點,可得(或其補(bǔ)角)為異面直線AB與EF所成的角,在求解即可.【詳解】取的中點,連結(jié)由分別為的中點,則所以(或其補(bǔ)角)為異面直線AB與EF所成的角由分別是的中點,則,又在中,,則所以,又,所以在直角中,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】(1)取中點,連接,根據(jù)直棱柱的特征,易知,再由、分別為的中點,根據(jù)中位線定理,可得,得到四邊形為平行四邊形,再利用線面平行的判定定理證明.(2)取的中點,連接,以為原點,、、分別為、、軸建立空間直角坐標(biāo)系,則.,再分別求得平面和平面的一個法向量,利用面面角的向量公式求解.【詳解】(1)證明:如圖所示:取中點,連接,易知,、分別為的中點,∴,∴故四邊形為平行四邊形,∴,∵平面,平面,平面(2)取的中點,連接,以為原點,、、分別為、、軸建立如圖所示的空間直角坐標(biāo)系,如圖所示:則∴,設(shè)平面的法向量為,則,即,取,得,易知平面的一個法向量為,∴,∴二面角的余弦值為【點睛】本題主要考查線面平行的判定定理和面面角的向量求法,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.18、(1)證明見解析(2)【解析】(1)連接BD交AC于點E,連接ME,由所給條件推理出CA⊥AD,進(jìn)而得CA⊥平面PAD,證得結(jié)論(2)首先以A為原點,射線AC,AD,AP分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,再利用向量法求解二面角即可【小問1詳解】(1)連接BD交AC于點E,連接ME,如圖所示:∵平面MAC,PB平面PBD,平面PBD平面MAC=ME,∴,,則BC=1,而AB=2,,,∴AC2+BC2=4=AB2,∠ACB=90o,∠CAD=90o,即CA⊥AD,又PA⊥平面ABCD,CA平面ABCD,∴PA⊥CA,又PAAD=A,∴CA⊥平面PAD,而CA平面MAC,∴平面MAC⊥平面PAD【小問2詳解】(2)如圖所示:以A為原點,射線AC,AD,AP分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,則,∴,設(shè)平面PAB和平面MAC的一個法向量分別為,平面PAB和平面MAC所成銳二面角為,∴,,∴.19、(1);(2)存在,定圓.【解析】(1)由題可得,,即求;(2)由題可設(shè)直線的方程,利用韋達(dá)定理及條件可得直線恒過定點,則以為直徑的圓適合題意,即得.【小問1詳解】由題設(shè)知,橢圓上頂點為,且在直線上∴,即又點在橢圓上,∴解得,∴橢圓C的方程為;【小問2詳解】設(shè),,當(dāng)直線斜率存在,設(shè)直線為:聯(lián)立方程,化簡得∴,,∵,∴又∵,∴將,代入,化簡得,即則或,①當(dāng)時,直線恒過定點與點重合,不符題意.②當(dāng)時,直線恒過定點,記為點,∵,∴以為直徑,其中點為圓心的圓恒經(jīng)過兩點,則圓方程為:;當(dāng)直線斜率不存在,設(shè)方程為,,,且,,∴,解得或(舍去),,取,以為直徑作圓,圓方程為:恒經(jīng)過兩點,綜上所述,存在定圓恒經(jīng)過兩點.【點睛】關(guān)鍵點點睛:本題第二問的關(guān)鍵是證明直線恒過定點,結(jié)合條件可得以為直徑的圓,適合題意即得.20、(1)或;(2)5.【解析】(1)設(shè)的公比為q,解方程即得解;(2)分兩種情況解方程即得解.【小問1詳解】解:設(shè)的公比為q,由題設(shè)得由已知得,解得(舍去),或故或【小問2詳解】解:若,則由,得,解得若,則由,得,因為,所以此方程沒有正整數(shù)解綜上,21、(1)(2)或【解析】(1)由兩條直線垂直可設(shè)直線的方程為,將點的坐標(biāo)代入計算即可;(2)當(dāng)直線過原點時,根據(jù)直線的點斜式方程即可得出結(jié)果;當(dāng)直線不過原點時可設(shè)直線的方程為,將點的坐標(biāo)代入計算即可.【小問1詳解】解:因為直線與直線垂直所以,設(shè)直線的方程為,因為直線過點,所以,解得,所以直線的方程為【小問2詳解】解:當(dāng)直線過原點時,斜率為,由點斜式求得直線的方程是,即當(dāng)直線不過原點時,設(shè)直線的方程為,把點代入方程得,所以直線的方程是綜上,所求直線的方程為或22、(1);(2)見解析,定點【解析】(1)先判斷圓經(jīng)過橢圓的上、下頂點和右頂點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年智能制造裝備入股合作協(xié)議范本
- 2024-2030年中國安全鞋內(nèi)鋼包頭市場競爭策略分析及發(fā)展趨勢研究報告
- 2024年度智能制造設(shè)備融資合作意向協(xié)議書3篇
- 2024-2030年中國反6烯十八酸項目可行性研究報告
- 梅河口康美職業(yè)技術(shù)學(xué)院《生態(tài)建筑》2023-2024學(xué)年第一學(xué)期期末試卷
- 眉山藥科職業(yè)學(xué)院《建筑室內(nèi)設(shè)計制圖與識圖》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年版公司股份轉(zhuǎn)讓及業(yè)務(wù)重組專項合同版B版
- 馬鞍山學(xué)院《鄉(xiāng)鎮(zhèn)總體規(guī)劃》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度水暖電消防設(shè)施改造與節(jié)能降耗服務(wù)合同2篇
- 2024年小學(xué)三年級數(shù)學(xué)(北京版)-簡單分?jǐn)?shù)的加減法-3學(xué)習(xí)任務(wù)單
- 鉗夾實驗匯總
- 酒精安全周知卡
- 江蘇省電力公司“三集五大”體系機(jī)構(gòu)設(shè)置和人員配置方案
- 低血糖的預(yù)防及處理(課堂PPT)
- 國家開放大學(xué)2021年計算機(jī)應(yīng)用基礎(chǔ)終結(jié)性考試試題附答案
- 國家開放大學(xué)《財務(wù)管理》章節(jié)隨學(xué)隨練參考答案
- abap--一個功能非常全面的增強(qiáng)出口查找工具(僅供學(xué)習(xí))
- 服裝工藝(各工序)單價表
- 隧道變形及其控制技術(shù)1
- 生命密碼流年
- 紫色系簡潔風(fēng)送貨單表格模板
評論
0/150
提交評論