版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
甘肅省永昌縣四中2025屆數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.2.已知是雙曲線的兩個(gè)焦點(diǎn),過點(diǎn)且垂直于軸的直線與相交于兩點(diǎn),若,則的內(nèi)切圓半徑為()A. B. C. D.3.已知,,為圓上的動(dòng)點(diǎn),,過點(diǎn)作與垂直的直線交直線于點(diǎn),若點(diǎn)的橫坐標(biāo)為,則的取值范圍是()A. B. C. D.4.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點(diǎn),點(diǎn)P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或55.由實(shí)數(shù)組成的等比數(shù)列{an}的前n項(xiàng)和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.如圖,正方體的棱長(zhǎng)為1,動(dòng)點(diǎn)在線段上,、分別是、的中點(diǎn),則下列結(jié)論中錯(cuò)誤的是()A., B.存在點(diǎn),使得平面平面C.平面 D.三棱錐的體積為定值7.已知向量,,則與的夾角為()A. B. C. D.8.某幾何體的三視圖如圖所示,其俯視圖是由一個(gè)半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.9.已知定義在上的奇函數(shù)滿足,且當(dāng)時(shí),,則()A.1 B.-1 C.2 D.-210.已知類產(chǎn)品共兩件,類產(chǎn)品共三件,混放在一起,現(xiàn)需要通過檢測(cè)將其區(qū)分開來,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出2件類產(chǎn)品或者檢測(cè)出3件類產(chǎn)品時(shí),檢測(cè)結(jié)束,則第一次檢測(cè)出類產(chǎn)品,第二次檢測(cè)出類產(chǎn)品的概率為()A. B. C. D.11.已知集合,,則等于()A. B. C. D.12.已知,,由程序框圖輸出的為()A.1 B.0 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,圓,直線PM,PN分別與圓O相切,切點(diǎn)為M,N,若,則的最小值為________.14.假設(shè)10公里長(zhǎng)跑,甲跑出優(yōu)秀的概率為,乙跑出優(yōu)秀的概率為,丙跑出優(yōu)秀的概率為,則甲、乙、丙三人同時(shí)參加10公里長(zhǎng)跑,剛好有2人跑出優(yōu)秀的概率為________.15.已知實(shí)數(shù)x,y滿足,則的最大值為____________.16.若滿足約束條件,則的最小值是_________,最大值是_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某市為了鼓勵(lì)市民節(jié)約用電,實(shí)行“階梯式”電價(jià),將該市每戶居民的月用電量劃分為三檔,月用電量不超過度的部分按元/度收費(fèi),超過度但不超過度的部分按元/度收費(fèi),超過度的部分按元/度收費(fèi).(I)求某戶居民用電費(fèi)用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這戶居民中,今年1月份用電費(fèi)用不超過元的占,求,的值;(Ⅲ)在滿足(Ⅱ)的條件下,若以這戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)代替,記為該居民用戶1月份的用電費(fèi)用,求的分布列和數(shù)學(xué)期望.18.(12分)的內(nèi)角,,的對(duì)邊分別為,,已知,.(1)求;(2)若的面積,求.19.(12分)超級(jí)病菌是一種耐藥性細(xì)菌,產(chǎn)生超級(jí)細(xì)菌的主要原因是用于抵抗細(xì)菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對(duì)相應(yīng)的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對(duì)它起不到什么作用,病人會(huì)因?yàn)楦腥径鹂膳碌难装Y,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級(jí)細(xì)菌,需要檢驗(yàn)血液是否為陽性,現(xiàn)有n()份血液樣本,每個(gè)樣本取到的可能性均等,有以下兩種檢驗(yàn)方式:(1)逐份檢驗(yàn),則需要檢驗(yàn)n次;(2)混合檢驗(yàn),將其中k(且)份血液樣本分別取樣混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對(duì)這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為次,假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為p().(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗(yàn)方式,求恰好經(jīng)過2次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來的概率;(2)現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.(i)試運(yùn)用概率統(tǒng)計(jì)的知識(shí),若,試求p關(guān)于k的函數(shù)關(guān)系式;(ii)若,采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求k的最大值.參考數(shù)據(jù):,,,,20.(12分)已知函數(shù),.(1)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù);(2)若在上單調(diào)遞增,且求c的最大值.21.(12分)在平面直角坐標(biāo)系中,點(diǎn),直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)若直線與曲線相交于不同的兩點(diǎn)是線段的中點(diǎn),當(dāng)時(shí),求的值.22.(10分)在中,角A,B,C的對(duì)邊分別是a,b,c,且向量與向量共線.(1)求B;(2)若,,且,求BD的長(zhǎng)度.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
構(gòu)造函數(shù),,利用導(dǎo)數(shù)分析出這兩個(gè)函數(shù)在區(qū)間上均為減函數(shù),由得出,分、、三種情況討論,利用放縮法結(jié)合函數(shù)的單調(diào)性推導(dǎo)出或,再利用余弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】構(gòu)造函數(shù),,則,,所以,函數(shù)、在區(qū)間上均為減函數(shù),當(dāng)時(shí),則,;當(dāng)時(shí),,.由得.①若,則,即,不合乎題意;②若,則,則,此時(shí),,由于函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,則,;③若,則,則,此時(shí),由于函數(shù)在區(qū)間上單調(diào)遞減,函數(shù)在區(qū)間上單調(diào)遞增,則,.綜上所述,.故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的應(yīng)用,構(gòu)造新函數(shù)是解本題的關(guān)鍵,解題時(shí)要注意對(duì)的取值范圍進(jìn)行分類討論,考查推理能力,屬于中等題.2、B【解析】
首先由求得雙曲線的方程,進(jìn)而求得三角形的面積,再由三角形的面積等于周長(zhǎng)乘以內(nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長(zhǎng)為,設(shè)的內(nèi)切圓的半徑為,則,故選:B【點(diǎn)睛】本題考查雙曲線的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.3、A【解析】
由題意得,即可得點(diǎn)M的軌跡為以A,B為左、右焦點(diǎn),的雙曲線,根據(jù)雙曲線的性質(zhì)即可得解.【詳解】如圖,連接OP,AM,由題意得,點(diǎn)M的軌跡為以A,B為左、右焦點(diǎn),的雙曲線,.故選:A.【點(diǎn)睛】本題考查了雙曲線定義的應(yīng)用,考查了轉(zhuǎn)化化歸思想,屬于中檔題.4、B【解析】
根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點(diǎn)睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎(chǔ)題.5、C【解析】
根據(jù)等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:若{an}是等比數(shù)列,則,
若,則,即成立,
若成立,則,即,
故“”是“”的充要條件,
故選:C.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的通項(xiàng)公式是解決本題的關(guān)鍵.6、B【解析】
根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因?yàn)榉謩e是中點(diǎn),所以,故A正確;在B中,由于直線與平面有交點(diǎn),所以不存在點(diǎn),使得平面平面,故B錯(cuò)誤;在C中,由平面幾何得,根據(jù)線面垂直的性質(zhì)得出,結(jié)合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【點(diǎn)睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.7、B【解析】
由已知向量的坐標(biāo),利用平面向量的夾角公式,直接可求出結(jié)果.【詳解】解:由題意得,設(shè)與的夾角為,,由于向量夾角范圍為:,∴.故選:B.【點(diǎn)睛】本題考查利用平面向量的數(shù)量積求兩向量的夾角,注意向量夾角的范圍.8、C【解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應(yīng)選.9、B【解析】
根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時(shí),f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時(shí),;∴由奇函數(shù)性質(zhì)可得;∴;∴時(shí),;∴.故選:B.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和周期性求值,此類問題一般根據(jù)條件先推導(dǎo)出周期,利用函數(shù)的周期變換來求解,考查理解能力和計(jì)算能力,屬于中等題.10、D【解析】
根據(jù)分步計(jì)數(shù)原理,由古典概型概率公式可得第一次檢測(cè)出類產(chǎn)品的概率,不放回情況下第二次檢測(cè)出類產(chǎn)品的概率,即可得解.【詳解】類產(chǎn)品共兩件,類產(chǎn)品共三件,則第一次檢測(cè)出類產(chǎn)品的概率為;不放回情況下,剩余4件產(chǎn)品,則第二次檢測(cè)出類產(chǎn)品的概率為;故第一次檢測(cè)出類產(chǎn)品,第二次檢測(cè)出類產(chǎn)品的概率為;故選:D.【點(diǎn)睛】本題考查了分步乘法計(jì)數(shù)原理的應(yīng)用,古典概型概率計(jì)算公式的應(yīng)用,屬于基礎(chǔ)題.11、A【解析】
進(jìn)行交集的運(yùn)算即可.【詳解】,1,2,,,,1,.故選:.【點(diǎn)睛】本題主要考查了列舉法、描述法的定義,考查了交集的定義及運(yùn)算,考查了計(jì)算能力,屬于基礎(chǔ)題.12、D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點(diǎn):1、程序框圖;2、定積分.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由可知R為中點(diǎn),設(shè),由過切點(diǎn)的切線方程即可求得,,代入,,則在直線上,即可得方程為,將,代入化簡(jiǎn)可得,則直線過定點(diǎn),由則點(diǎn)在以為直徑的圓上,則.即可求得.【詳解】如圖,由可知R為MN的中點(diǎn),所以,,設(shè),則切線PM的方程為,即,同理可得,因?yàn)镻M,PN都過,所以,,所以在直線上,從而直線MN方程為,因?yàn)?,所以,即直線MN方程為,所以直線MN過定點(diǎn),所以R在以O(shè)Q為直徑的圓上,所以.故答案為:.【點(diǎn)睛】本題考查直線和圓的位置關(guān)系,考查圓的切線方程,定點(diǎn)和圓上動(dòng)點(diǎn)距離的最值問題,考查學(xué)生的數(shù)形結(jié)合能力和計(jì)算能力,難度較難.14、【解析】
分跑出優(yōu)秀的人為:甲、乙和甲、丙和乙、丙三種情況分別計(jì)算再求和即可.【詳解】剛好有2人跑出優(yōu)秀有三種情況:其一是只有甲、乙兩人跑出優(yōu)秀的概率為;其二是只有甲、丙兩人跑出優(yōu)秀的概率為;其三是只有乙、丙兩人跑出優(yōu)秀的概率為,三種情況相加得.即剛好有2人跑出優(yōu)秀的概率為.故答案為:【點(diǎn)睛】本題主要考查了分類方法求解事件概率的問題,屬于基礎(chǔ)題.15、1【解析】
直接用表示出,然后由不等式性質(zhì)得出結(jié)論.【詳解】由題意,又,∴,即,∴的最大值為1.故答案為:1.【點(diǎn)睛】本題考查不等式的性質(zhì),掌握不等式的性質(zhì)是解題關(guān)鍵.16、06【解析】
作不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可求出結(jié)果.【詳解】作出可行域,如圖中的陰影部分:求的最值,即求直線在軸上的截距最小和最大時(shí),當(dāng)直線過點(diǎn)時(shí),軸上截距最大,即z取最小值,.當(dāng)直線過點(diǎn)時(shí),軸上截距最小,即z取最大值,.故答案為:0;6.【點(diǎn)睛】本題主要考查了線性規(guī)劃中的最值問題,利用數(shù)形結(jié)合是解決問題的基本方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),;(3)見解析.【解析】試題分析:(1)根據(jù)題意分段表示出函數(shù)解析式;(2)將代入(1)中函數(shù)解析式可得,即,根據(jù)頻率分布直方圖可分別得到關(guān)于的方程,即可得;(3)取每段中點(diǎn)值作為代表的用電量,分別算出對(duì)應(yīng)的費(fèi)用值,對(duì)應(yīng)得出每組電費(fèi)的概率,即可得到的概率分布列,然后求出的期望.試題解析:(1)當(dāng)時(shí),;當(dāng)當(dāng)時(shí),;當(dāng)當(dāng)時(shí),,所以與之間的函數(shù)解析式為.(2)由(1)可知,當(dāng)時(shí),,則,結(jié)合頻率分布直方圖可知,∴,(3)由題意可知可取50,150,250,350,450,550,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,故的概率分布列為25751402203104100.10.20.30.20.150.05所以隨機(jī)變量的數(shù)學(xué)期望18、(1);(2)【解析】
試題分析:(1)根據(jù)余弦定理求出B,帶入條件求出,利用同角三角函數(shù)關(guān)系求其余弦,再利用兩角差的余弦定理即可求出;(2)根據(jù)(1)及面積公式可得,利用正弦定理即可求出.試題解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及題設(shè)條件,得,∴.由,得,∴,∴.點(diǎn)睛:解決三角形中的角邊問題時(shí),要根據(jù)條件選擇正余弦定理,將問題轉(zhuǎn)化統(tǒng)一為邊的問題或角的問題,利用三角中兩角和差等公式處理,特別注意內(nèi)角和定理的運(yùn)用,涉及三角形面積最值問題時(shí),注意均值不等式的利用,特別求角的時(shí)候,要注意分析角的范圍,才能寫出角的大小.19、(1)(2)(i)(,且).(ii)最大值為4.【解析】
(1)設(shè)恰好經(jīng)過2次檢驗(yàn)?zāi)馨殃栃詷颖救繖z驗(yàn)出來為事件A,利用古典概型、排列組合求解即可;(2)(i)由已知得,的所有可能取值為1,,則可求得,,即可得到,進(jìn)而由可得到p關(guān)于k的函數(shù)關(guān)系式;(ii)由可得,推導(dǎo)出,設(shè)(),利用導(dǎo)函數(shù)判斷的單調(diào)性,由單調(diào)性可求出的最大值【詳解】(1)設(shè)恰好經(jīng)過2次檢驗(yàn)?zāi)馨殃栃詷颖救繖z驗(yàn)出來為事件A,則,∴恰好經(jīng)過兩次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來的概率為(2)(i)由已知得,的所有可能取值為1,,,,,若,則,則,,,∴p關(guān)于k的函數(shù)關(guān)系式為(,且)(ii)由題意知,得,,,,設(shè)(),則,令,則,∴當(dāng)時(shí),,即在上單調(diào)增減,又,,,又,,,∴k的最大值為4【點(diǎn)睛】本題考查古典概型的概率公式的應(yīng)用,考查隨機(jī)變量及其分布,考查利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性20、(1)見解析(2)2【解析】
(1)將代入可得,令,則,設(shè),則轉(zhuǎn)化問題為與的交點(diǎn)問題,利用導(dǎo)函數(shù)判斷的圖象,即可求解;(2)由題可得在上恒成立,設(shè),利用導(dǎo)函數(shù)可得,則,即,再設(shè),利用導(dǎo)函數(shù)求得的最小值,則,進(jìn)而求解.【詳解】(1)當(dāng)時(shí),,定義域?yàn)?由可得,令,則,由,得;由,得,所以在上單調(diào)遞增,在上單調(diào)遞減,則的最大值為,且當(dāng)時(shí),;當(dāng)時(shí),,由此作出函數(shù)的大致圖象,如圖所示.由圖可知,當(dāng)時(shí),直線和函數(shù)的圖象有兩個(gè)交點(diǎn),即函數(shù)有兩個(gè)零點(diǎn);當(dāng)或,即或時(shí),直線和函數(shù)的圖象有一個(gè)交點(diǎn),即函數(shù)有一個(gè)零點(diǎn);當(dāng)即時(shí),直線與函數(shù)的象沒有交點(diǎn),即函數(shù)無零點(diǎn).(2)因?yàn)樵谏蠁握{(diào)遞增,即在上恒成立,設(shè),則,①若,則,則在上單調(diào)遞減,顯然,在上不恒成立;②若,則,在上單調(diào)遞減,當(dāng)時(shí),,故,單調(diào)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度教育機(jī)構(gòu)內(nèi)部“2024版內(nèi)通辦”教育資源共享合同4篇
- 二零二五年度中小企業(yè)技術(shù)改造擔(dān)保借款合同樣本4篇
- 二零二五年度內(nèi)蒙古自治區(qū)農(nóng)牧廳農(nóng)業(yè)人才培養(yǎng)與引進(jìn)合同3篇
- 二零二五版鎳礦市場(chǎng)調(diào)研與信息服務(wù)合同4篇
- 2025年度標(biāo)準(zhǔn)門面租賃合同及租賃期限延長(zhǎng)及續(xù)租條款3篇
- 2025年度苗木種植與現(xiàn)代農(nóng)業(yè)園區(qū)建設(shè)合同4篇
- 二零二五年度“農(nóng)業(yè)科技”菜園智能化溫室建設(shè)合同3篇
- 2025年度農(nóng)戶綠色農(nóng)業(yè)發(fā)展基金合同4篇
- 二零二五年度體育賽事賽事品牌合作開發(fā)與推廣勞務(wù)分包合同
- 二零二五版文化產(chǎn)業(yè)投資內(nèi)部股東全部股權(quán)轉(zhuǎn)讓與合作開發(fā)合同4篇
- 足浴技師與店內(nèi)禁止黃賭毒協(xié)議書范文
- 中國高血壓防治指南(2024年修訂版)要點(diǎn)解讀
- 2024-2030年中國光電干擾一體設(shè)備行業(yè)發(fā)展現(xiàn)狀與前景預(yù)測(cè)分析研究報(bào)告
- 湖南省岳陽市岳陽樓區(qū)2023-2024學(xué)年七年級(jí)下學(xué)期期末數(shù)學(xué)試題(解析版)
- 農(nóng)村自建房安全合同協(xié)議書
- 杜仲葉藥理作用及臨床應(yīng)用研究進(jìn)展
- 4S店售后服務(wù)6S管理新規(guī)制度
- 高性能建筑鋼材的研發(fā)與應(yīng)用
- 無線廣播行業(yè)現(xiàn)狀分析
- 漢語言溝通發(fā)展量表(長(zhǎng)表)-詞匯及手勢(shì)(8-16月齡)
- 高速公路相關(guān)知識(shí)講座
評(píng)論
0/150
提交評(píng)論