2025屆寧夏銀川二中高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第1頁
2025屆寧夏銀川二中高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第2頁
2025屆寧夏銀川二中高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第3頁
2025屆寧夏銀川二中高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第4頁
2025屆寧夏銀川二中高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆寧夏銀川二中高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.某校早上6:30開始跑操,假設(shè)該校學(xué)生小張與小王在早上6:00~6:30之間到校,且每人在該時(shí)間段的任何時(shí)刻到校是等可能的,則小張與小王至少相差5分鐘到校的概率為()A. B.C. D.2.對(duì)任意正實(shí)數(shù),不等式恒成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.3.已知,,則()A. B.C. D.4.函數(shù)的大致圖像如圖所示,則它的解析式是A. B.C. D.5.已知函數(shù),若方程有五個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B.C. D.6.已知,,且,,則的值是A. B.C. D.7.已知,,是三個(gè)不同的平面,是一條直線,則下列說法正確的是()A.若,,,則B.若,,則C.若,,則D.若,,,則8.17世紀(jì),在研究天文學(xué)的過程中,為了簡(jiǎn)化大數(shù)運(yùn)算,蘇格蘭數(shù)學(xué)家納皮爾發(fā)明了對(duì)數(shù),對(duì)數(shù)的思想方法即把乘方和乘法運(yùn)算分別轉(zhuǎn)化為乘法和加法,數(shù)學(xué)家拉普拉斯稱贊為“對(duì)數(shù)的發(fā)明在實(shí)效上等于把天文學(xué)家的壽命延長(zhǎng)了許多倍”.已知,,設(shè),則所在的區(qū)間為()A. B.C. D.9.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞減的是A. B.C. D.10.若“”是“”的充分不必要條件,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,若,則__________.12.某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為元時(shí),可全部租出.當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.若使租賃公司的月收益最大,每輛車的月租金應(yīng)該定為__________13.已知函數(shù)的圖象與函數(shù)及函數(shù)的圖象分別交于兩點(diǎn),則的值為__________14.命題“,”的否定是___________.15.某市生產(chǎn)總值連續(xù)兩年持續(xù)增加,第一年的增長(zhǎng)率為p,第二年的增長(zhǎng)率為q,則該市這兩年生產(chǎn)總值的年平均增長(zhǎng)率為()A. B.C. D.-116.已知函數(shù)的圖上存在一點(diǎn),函數(shù)的圖象上存在一點(diǎn),恰好使兩點(diǎn)關(guān)于直線對(duì)稱,則滿足上述要求的實(shí)數(shù)的取值范圍是___________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù).(1)當(dāng)時(shí),求函數(shù)的零點(diǎn);(2)當(dāng)時(shí),判斷的奇偶性并給予證明;(3)當(dāng)時(shí),恒成立,求m的最大值.18.如圖,在平行四邊形中,設(shè),.(1)用向量,表示向量,;(2)若,求證:.19.如圖,直三棱柱中,分別為的中點(diǎn).(1)求證:平面;(2)已知,,,求三棱錐的體積.20.已知函數(shù)f(x)=(1)判斷函數(shù)f(x)的奇偶性;(2)判斷并證明函數(shù)f(x)的單調(diào)性;(3)解不等式:f(x2-2x)+f(3x-2)<0;21.如圖,在直三棱柱中,底面為等邊三角形,.(Ⅰ)求三棱錐的體積;(Ⅱ)在線段上尋找一點(diǎn),使得,請(qǐng)說明作法和理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】設(shè)小張與小王的到校時(shí)間分別為6:00后第分鐘,第分鐘,由題意可畫出圖形,利用幾何概型中面積比即可求解.【詳解】設(shè)小張與小王的到校時(shí)間分別為6:00后第分鐘,第分鐘,可以看成平面中的點(diǎn)試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)槭且粋€(gè)正方形區(qū)域,對(duì)應(yīng)的面積,則小張與小王至少相差5分鐘到校事件(如陰影部分)則符合題意的區(qū)域,由幾何概型可知小張與小王至少相差5分鐘到校的概率為.故選:A【點(diǎn)睛】本題考查了幾何概率模型,解題的關(guān)鍵是畫出滿足條件的區(qū)域,屬于基礎(chǔ)題.2、C【解析】先根據(jù)不等式恒成立等價(jià)于,再根據(jù)基本不等式求出,即可求解.【詳解】解:,即,即又當(dāng)且僅當(dāng)“”,即“”時(shí)等號(hào)成立,即,故.故選:C.3、D【解析】由同角三角函數(shù)的平方關(guān)系計(jì)算即可得出結(jié)果.【詳解】因?yàn)?,?,所以.故選:D4、D【解析】由圖易知:函數(shù)圖象關(guān)于y軸對(duì)稱,函數(shù)為偶函數(shù),排除A,B;的圖象為開口向上的拋物線,顯然不適合,故選D點(diǎn)睛:識(shí)圖常用方法(1)定性分析法:通過對(duì)問題進(jìn)行定性的分析,從而得出圖象的上升(或下降)的趨勢(shì),利用這一特征分析解決問題;(2)定量計(jì)算法:通過定量的計(jì)算來分析解決問題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關(guān)函數(shù)模型,利用這一函數(shù)模型來分析解決問題5、A【解析】由可得或,數(shù)形結(jié)合可方程只有解,則直線與曲線有個(gè)交點(diǎn),結(jié)合圖象可得出實(shí)數(shù)的取值范圍.【詳解】由可得或,當(dāng)時(shí),;當(dāng)時(shí),.作出函數(shù)、、圖象如下圖所示:由圖可知,直線與曲線有個(gè)交點(diǎn),即方程只有解,所以,方程有解,即直線與曲線有個(gè)交點(diǎn),則.故選:A.6、B【解析】由,得,所以,,得,,所以,從而有,.故選:B7、A【解析】利用面面垂直的性質(zhì),線面的位置關(guān)系,面面的位置關(guān)系,結(jié)合幾何模型即可判斷.【詳解】對(duì)于A,在平面內(nèi)取一點(diǎn)P,在平面內(nèi)過P分別作平面與,與的交線的垂線a,b,則由面面垂直的性質(zhì)定理可得,又,∴,由線面垂直的判定定理可得,故A正確;對(duì)于B,若,,則與位置關(guān)系不確定,可能與平行、相交或在內(nèi),故B錯(cuò)誤;對(duì)于C,若,,則與相交或平行,故C錯(cuò)誤;對(duì)于D,如圖平面,且,,,顯然與不垂直,故D錯(cuò)誤.故選:A.8、C【解析】利用對(duì)數(shù)的運(yùn)算性質(zhì)求出,由此可得答案.【詳解】,所以.故選:C9、C【解析】因?yàn)楹瘮?shù)是奇函數(shù),所以選項(xiàng)A不正確;因?yàn)楹癁楹瘮?shù)既不是奇函數(shù),也不是偶函數(shù),所以選項(xiàng)B不正確;函數(shù)圖象拋物線開口向下,對(duì)稱軸是軸,所以此函數(shù)是偶函數(shù),且在區(qū)間上單調(diào)遞減,所以,選項(xiàng)C正確;函數(shù)雖然是偶函數(shù),但是此函數(shù)在區(qū)間上是增函數(shù),所以選項(xiàng)D不正確;故選C考點(diǎn):1、函數(shù)的單調(diào)性與奇偶性;2、指數(shù)函數(shù)與對(duì)數(shù)函數(shù);3函數(shù)的圖象10、B【解析】轉(zhuǎn)化“”是“”的充分不必要條件為,分析即得解【詳解】由題意,“”是“”的充分不必要條件故故故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由已知先求得,再求得,代入可得所需求的函數(shù)值.【詳解】由已知得,即,所以,而,故答案為.【點(diǎn)睛】本題考查函數(shù)求值中的給值求值問題,關(guān)鍵在于由已知的函數(shù)值求得其數(shù)量關(guān)系,代入所需求的函數(shù)解析式中,可得其值,屬于基礎(chǔ)題.12、4050【解析】設(shè)每輛車的月租金定為元,則租賃公司的月收益:當(dāng)時(shí),最大,最大值為,即當(dāng)每車輛的月租金定為元時(shí),租賃公司的月收益最大,最大月收益是,故答案為.【思路點(diǎn)睛】本題主要考查閱讀能力、數(shù)學(xué)建模能力和化歸思想以及幾何概型概率公式,屬于難題.與實(shí)際應(yīng)用相結(jié)合的題型也是高考命題的動(dòng)向,這類問題的特點(diǎn)是通過現(xiàn)實(shí)生活的事例考查書本知識(shí),解決這類問題的關(guān)鍵是耐心讀題、仔細(xì)理解題,只有吃透題意,才能將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型進(jìn)行解答.解答本題的關(guān)鍵是:將租賃公司的月收益表示為關(guān)于每輛車的月租金的函數(shù),然后利用二次函數(shù)的性質(zhì)解答.13、【解析】利用函數(shù)及函數(shù)的圖象關(guān)于直線對(duì)稱可得點(diǎn)在函數(shù)的圖象上,進(jìn)而可得的值【詳解】由題意得函數(shù)及函數(shù)的圖象關(guān)于直線對(duì)稱,又函數(shù)的圖象與函數(shù)及函數(shù)的圖象分別交于兩點(diǎn),所以,從而點(diǎn)的坐標(biāo)為由題意得點(diǎn)在函數(shù)的圖象上,所以,所以故答案為4【點(diǎn)睛】解答本題的關(guān)鍵有兩個(gè):一是弄清函數(shù)及函數(shù)的圖象關(guān)于直線對(duì)稱,從而得到點(diǎn)也關(guān)于直線對(duì)稱,進(jìn)而得到,故得到點(diǎn)的坐標(biāo)為;二是根據(jù)點(diǎn)在函數(shù)的圖象上得到所求值.考查理解和運(yùn)用能力,具有靈活性和綜合性14、“,”【解析】直接利用全稱命題的否定是特稱命題寫出結(jié)果即可【詳解】因?yàn)槿Q命題的否定為特稱命題,故命題“,”的否定為:“,”故答案為:“,”15、D【解析】設(shè)平均增長(zhǎng)率為x,由題得故填.16、【解析】函數(shù)g(x)=lnx的反函數(shù)為,若函數(shù)f(x)的圖象上存在一點(diǎn)P,函數(shù)g(x)=lnx的圖象上存在一點(diǎn)Q,恰好使P、Q兩點(diǎn)關(guān)于直線y=x對(duì)稱,則函數(shù)g(x)=lnx的反函數(shù)圖象與f(x)圖象有交點(diǎn),即在x∈R上有解,,∵x∈R,∴∴即.三、三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)﹣3和1(2)奇函數(shù),證明見解析(3)3【解析】(1)令求解;(2)由(1)得到,再利用奇偶性的定義判斷;(3)將時(shí),恒成立,轉(zhuǎn)化為,在上恒成立求解.【小問1詳解】解:當(dāng)時(shí),由,解得或,∴函數(shù)的零點(diǎn)為﹣3和1;【小問2詳解】由(1)知,則,由,解得,故的定義域關(guān)于原點(diǎn)對(duì)稱,又,,∴,∴是上的奇函數(shù).【小問3詳解】∵,且當(dāng)時(shí),恒成立,即,在上恒成立,∴,在上恒成立,令,易知在上單調(diào)遞增∴,∴,故m的最大值為3.18、(1),.(2)證明見解析【解析】(1)根據(jù)向量的運(yùn)算法則,即可求得向量,;(2)由,根據(jù)向量的運(yùn)算法則,求得,即可求解.【小問1詳解】解:在平行四邊形中,由,,根據(jù)向量的運(yùn)算法則,可得,.【小問2詳解】解:因?yàn)?,可得,所?19、(1)詳見解析(2)2【解析】(1)證線面平行則需在面中找一線與已知線平行即可,也可通過證明面面平行得到線面平行(2)∵,,,∴,∴.∵是直棱柱,∴棱柱的高為,∴棱柱的體積為.由體積關(guān)系可得試題解析:(1)設(shè)是的中點(diǎn),分別在中使用三角形的中位線定理得.又是平面內(nèi)的相交直線,∴平面平面.又平面,∴平面.(2)∵,,,∴,∴.∵是直棱柱,∴棱柱的高為,∴棱柱的體積為.∴.20、(1)奇函數(shù)(2)單調(diào)增函數(shù),證明見解析(3)【解析】(1)按照奇函數(shù)的定義判斷即可;(2)按照單調(diào)性的定義判斷證明即可;(3)由單調(diào)遞增解不等式即可.【小問1詳解】易知函數(shù)定義域R,所以函數(shù)為奇函數(shù).【小問2詳解】設(shè)任意x1,x2∈R且x1<x2,f(x1)-f(x2)==∵x1<x2,∴,∴f(x1)<f(x2),∴f(x)是在(-∞,+∞)上是單調(diào)增函數(shù)【小問3詳解】∵f(x2-2x)+f(3x-2)<0,又∵f(x)是定義在R上的奇函數(shù)且在(-∞,+∞)上單調(diào)遞增,∴f(x2-2x)<f(2-3x),∴x2-2x<2-3x,∴-2<x<1.不等式的解集是21、(1)(2)見解析【解析】(1)取BC中點(diǎn)E連結(jié)AE,三棱錐C1﹣CB1A的體積,由此能求出結(jié)果.(2)在矩形BB1C1C中,連結(jié)EC1,推導(dǎo)出Rt△C1CE∽R(shí)t△CBF,從而CF⊥EC1,再求出AE⊥CF,由此得到在BB1上取F,使得,連結(jié)CF,CF即為所求直線解析:(1)取中點(diǎn)連結(jié).在等邊三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論