數(shù)據(jù)與模型安全 課件 第9周:隱私攻擊和防御_第1頁
數(shù)據(jù)與模型安全 課件 第9周:隱私攻擊和防御_第2頁
數(shù)據(jù)與模型安全 課件 第9周:隱私攻擊和防御_第3頁
數(shù)據(jù)與模型安全 課件 第9周:隱私攻擊和防御_第4頁
數(shù)據(jù)與模型安全 課件 第9周:隱私攻擊和防御_第5頁
已閱讀5頁,還剩46頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

PrivacyAttacks

&

Defenses姜育剛,馬興軍,吳祖煊SalvadorDalí,“ThePersistenceofMemory,”1931Recap:

week

8Data

Extraction

Attack

&

DefenseModel

Stealing

AttackFuture

ResearchThis

WeekMembership

Inference

AttackDifferential

PrivacyMembership

Inference

AttackDifferential

PrivacyMembership

Inference

AttackMembership

Inference

Attack推理一個輸入樣本是否存在于訓練數(shù)據(jù)集中Shokri,Reza,etal."Membershipinferenceattacksagainstmachinelearningmodels."

S&P,2017.存在?Privacy

and

Ethical

Problems

MIA

could

cause

the

following

harms:Leak

private

info:

someone

has

been

to

some

place

or

having

an

unspeakable

illness

Expose

info

about

the

training

dataMIA

sensitivity

also

indicates

data

leakage

riskAn

Early

WorkHomer,Nils,etal."ResolvingindividualscontributingtraceamountsofDNAtohighlycomplexmixturesusinghigh-densitySNPgenotypingmicroarrays."

PLoSgenetics

4.8(2008):e1000167.判斷個人基因是否出現(xiàn)在一個復雜的混合基因里可用于調查取證MIA:The

Most

Well-known

WorkShokri,Reza,etal."Membershipinferenceattacksagainstmachinelearningmodels."

S&P,2017.0Black-box

attack

pipelineNeeds

probability

vectorMIA:The

Most

Well-known

WorkShokri,Reza,etal."Membershipinferenceattacksagainstmachinelearningmodels."

S&P,2017.Train

k

shadow

models

on

disjoint

datasetsSample

a

number

of

subsets

from

DTrain

a

model

on

each

of

the

subsetTake

one

model

as

the

targetTake

the

rest

models

as

shadow

modelsMIA:The

Most

Well-known

WorkShokri,Reza,etal."Membershipinferenceattacksagainstmachinelearningmodels."

S&P,2017.Different

ways

to

get

the

training

data:Random

SynthesisData

synthesisPhase

1:

searching

for

high

confidence

data

points

in

the

data

spacePhase

2:

samplesyntheticdatafromthesepointsRepeat

the

above

for

each

class

cPhase

1:每次只改變已找到的高置信度樣本的k個特征MIA:The

Most

Well-known

WorkShokri,Reza,etal."Membershipinferenceattacksagainstmachinelearningmodels."

S&P,2017.Statistics-basedsynthesisPrior

knowledge:The

marginal

distribution

w.r.t.

each

classPhase

1:

sample

according

to

the

statisticsMIA:The

Most

Well-known

WorkShokri,Reza,etal."Membershipinferenceattacksagainstmachinelearningmodels."

S&P,2017.We

could

also

assume

the

attacker

can

access

NoisyRealdata:

real

but

noisyVery

similar

to

the

real

datasetBut

with

a

few

features

(10%

or

20%)

are

randomly

resetMIA:The

Most

Well-known

WorkShokri,Reza,etal."Membershipinferenceattacksagainstmachinelearningmodels."

S&P,2017.Finally:

training

the

inference

model”in”:

in

the

training

set”out”:

:

in

the

test

setTrain

the

inference

model

with

dataset:

(prob1,

”in”),

(prob2,

”in”),

(prob3,

”out”)

(prob4,

”out”)MIA:The

Most

Well-known

WorkShokri,Reza,etal."Membershipinferenceattacksagainstmachinelearningmodels."

S&P,2017.How

well

can

MIA

perform?數(shù)據(jù)集:CIFAR-10、CIFAR-100、Purchases、Locations、Texashospitalstays、MNIST、UCIAdult(CensusIncome).White-box

MIANasr

et

al.“Comprehensiveprivacyanalysisofdeeplearning:Passiveandactivewhite-boxinferenceattacksagainstcentralizedandfederatedlearning.”

S&P,2019.

Hu,Hongsheng,etal."Membershipinferenceattacksonmachinelearning:Asurvey."

ACMComputingSurveys(CSUR)

54.11s(2022):1-37.White-boxvs

Black-boxWhite-box

MIANasr

et

al."Comprehensiveprivacyanalysisofdeeplearning:Passiveandactivewhite-boxinferenceattacksagainstcentralizedandfederatedlearning."

S&P,2019.抽取特征:概率、中間層激活、梯度無監(jiān)督設置下的重構損失推理結果Limitations

of

MIAConstructing

shadow

modelsAssuming

access

to

some

data

or

prior

knowledgeOverfitting

is

a

mustLimited

to

classification

modelsLimited

to

small

modelsAddressing

Limitations

of

MIASalemetal."ML-Leaks:ModelandDataIndependentMembershipInferenceAttacksandDefensesonMachineLearningModels."

NDSS,2019.Model

and

Data

Independent

MIAAddressing

Limitations

of

MIALong,Yunhui,etal."Apragmaticapproachtomembershipinferencesonmachinelearningmodels."

EuroS&P,2020.Attacking

non-overfitting

DNNsFocusing

on

minimizingfalsepositives目標問題:樣本A/B在哪個模型的訓練數(shù)據(jù)里?Addressing

Limitations

of

MIALeino

&

Fredrikson."StolenMemories:LeveragingModelMemorizationforCalibratedWhite-BoxMembershipInference."

USENIXSecurity,2020.More

practical

white-box

threat

modelThe

adversary

only

knows

the

model

but

not

the

data

distribution利用詭異的獨家記憶進行成員推理Training

imagesInternal

explanations

Pink

background

explanation

of

Tony

BlairAddressing

Limitations

of

MIAHayes,Jamie,etal."Logan:Membershipinferenceattacksagainstgenerativemodels."

arXivpreprintarXiv:1705.07663

(2017).Extension

to

generative

models充分利用判別器的判別能力:高置信度的大概率來自原始訓練數(shù)據(jù)集Metric-guided

MIAYeom,Samuel,etal.“Privacyriskinmachinelearning:Analyzingtheconnectiontooverfitting.”

CSF,

2018.

Salemetal."ML-Leaks:ModelandDataIndependentMembershipInferenceAttacksandDefensesonMachineLearningModels."

NDSS,2019.Metric

based

Anomaly

detection預測正確性:預測正確的就是成員預測損失:高于訓練樣本平均損失的是成員預測置信度:有概率接近1的是成員預測熵:低概率熵的是成員修正預測熵:不同類別區(qū)別考慮A

Summary

of

Existing

MIAsUsed

DatasetsImage:CIFAR-10,CIFAR-100,MNIST,Fashion-MNIST,YaleFace,ChestX-ray8,SVHN,CelebA,ImageNetTabulate:Adult,Foursquare,Purchase-100,Texas100,Location,etc.Audio:LibriSpeech,TIMIT,TED

Text:Weibo,TweetEmoInt,SATED,Dislogs,Redditcomments,Cora,

Pubmed,CitesserHu,Hongsheng,etal.“Membershipinferenceattacksonmachinelearning:A

survey.”

ACMComputingSurveys,

2022.A

Summary

of

Existing

MIAsTargetmodels:Onimage:Multi-layerCNN+1or2FC(>5papersused2-4layersCNN)Alexnet,ResNet18,ResNet50,VGG16,VGG19,DenseNet121,Efficient-netv2,EfficientNetB0GAN:InfoGAN,PGGAN,WGANGP,DCGAN,MEDGAN,andVAEGANOntabulate

data:FConlymodelsOntext:Multi-layerCNN,multi-layerRNN/LSTM,

transformers(e.g.,BERT,GPT-2)Onaudio:Hybridsystem:HMM-DNNmodelEnd-to-end:Multi-layerLSTM/RNN/GRUMLaaS(Online):GooglePredictionAPI,AmazonMLMembership

Inference

AttackDifferential

PrivacyDifferential

PrivacyFinite

Difference

and

Derivativeh

tends

to

be

small(zero)通過函數(shù)在某一點隨微小擾動的變化可以估計在這一點的梯度如果對數(shù)據(jù)集進行微小擾動呢?Differential

PrivacyFinite

Difference

->

Differential

Privacy數(shù)據(jù)集的微小變化會導致多大的算法輸出變化?

函數(shù)

輸入值

Differential

Privacy

數(shù)據(jù)集的微小變化會導致多大的算法輸出變化?

Differential

Privacy

Dwork,Cynthia."Differentialprivacy:Asurveyofresults."

ICTAMC,Heidelberg,2008.Properties

of

DPMcSherry,FrankD.“Privacyintegratedqueries:anextensibleplatformforprivacy-preservingdataanalysis.”

ACM

SIGMOD,2009.How

to

Obtain

a

Differentially

Private

Model?思考:如何讓自己的聲音不被發(fā)現(xiàn)??Measuring

SensitivityNissimandAdam.“Smoothsensitivityandsamplinginprivatedataanalysis.”

STOC,2007.Noise

Models幾種噪聲添加機制拉普拉斯機制(Laplacian)高斯機制(Gaussian)指數(shù)機制:離散->

概率;確定->不確定The

Laplace

Mechanism拉普拉斯機制(Laplace

Mechanism)

SaTML2023-GautamKamath-AnIntroductiontoDifferentialPrivacyThe

Laplace

Mechanism拉普拉斯機制(Laplace

Mechanism)

SaTML2023-GautamKamath-AnIntroductiontoDifferentialPrivacyThe

Laplace

Mechanism

SaTML2023-GautamKamath-AnIntroductiontoDifferentialPrivacyLaplace

vs.

Gaussian

SaTML2023-GautamKamath-AnIntroductiontoDifferentialPrivacyDP

+

Deep

Learning問題:在哪里添加噪聲?輸入空間模型空間輸出空間輸入空間DP差分隱私預處理訓練數(shù)據(jù)dp-GAN

pipelineZhang

et

al.“Differentiallyprivatereleasingviadeepgenerativemodel(technicalreport).”

arXiv:1801.01594

(2018).輸入空間DP隨機平滑Randomized

Smoothing隨機平滑:可驗證對抗防御Cohen,Jeremy,ElanRosenfeld,andZicoKolter."Certifiedadversarialrobustnessviarandomizedsmoothing."

ICML,2019.用隨機噪聲填充輸入空間,得到對抗魯棒性邊界模型空間DPAbadi,Martin,etal.“Deeplearningwithdifferentialprivacy.”

CCS,

2016.差分隱私平滑模型參數(shù):DP-SGD算法DP-SGD性能SaTML2023-GautamKamath-AnIntroductiontoDifferentialPrivacyDP-SGD性能SaTML2023-GautamKamath-AnIntroductiontoDifferentialPrivacyDP-SGD性能SaTML2023-GautamKamath-AnIntroductiontoDifferentialPrivacyMore

Practical

Solution?1:

Training

on

public

dat

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論