版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
PrivacyAttacks
&
Defenses姜育剛,馬興軍,吳祖煊SalvadorDalí,“ThePersistenceofMemory,”1931Recap:
week
8Data
Extraction
Attack
&
DefenseModel
Stealing
AttackFuture
ResearchThis
WeekMembership
Inference
AttackDifferential
PrivacyMembership
Inference
AttackDifferential
PrivacyMembership
Inference
AttackMembership
Inference
Attack推理一個輸入樣本是否存在于訓練數(shù)據(jù)集中Shokri,Reza,etal."Membershipinferenceattacksagainstmachinelearningmodels."
S&P,2017.存在?Privacy
and
Ethical
Problems
MIA
could
cause
the
following
harms:Leak
private
info:
someone
has
been
to
some
place
or
having
an
unspeakable
illness
Expose
info
about
the
training
dataMIA
sensitivity
also
indicates
data
leakage
riskAn
Early
WorkHomer,Nils,etal."ResolvingindividualscontributingtraceamountsofDNAtohighlycomplexmixturesusinghigh-densitySNPgenotypingmicroarrays."
PLoSgenetics
4.8(2008):e1000167.判斷個人基因是否出現(xiàn)在一個復雜的混合基因里可用于調查取證MIA:The
Most
Well-known
WorkShokri,Reza,etal."Membershipinferenceattacksagainstmachinelearningmodels."
S&P,2017.0Black-box
attack
pipelineNeeds
probability
vectorMIA:The
Most
Well-known
WorkShokri,Reza,etal."Membershipinferenceattacksagainstmachinelearningmodels."
S&P,2017.Train
k
shadow
models
on
disjoint
datasetsSample
a
number
of
subsets
from
DTrain
a
model
on
each
of
the
subsetTake
one
model
as
the
targetTake
the
rest
models
as
shadow
modelsMIA:The
Most
Well-known
WorkShokri,Reza,etal."Membershipinferenceattacksagainstmachinelearningmodels."
S&P,2017.Different
ways
to
get
the
training
data:Random
SynthesisData
synthesisPhase
1:
searching
for
high
confidence
data
points
in
the
data
spacePhase
2:
samplesyntheticdatafromthesepointsRepeat
the
above
for
each
class
cPhase
1:每次只改變已找到的高置信度樣本的k個特征MIA:The
Most
Well-known
WorkShokri,Reza,etal."Membershipinferenceattacksagainstmachinelearningmodels."
S&P,2017.Statistics-basedsynthesisPrior
knowledge:The
marginal
distribution
w.r.t.
each
classPhase
1:
sample
according
to
the
statisticsMIA:The
Most
Well-known
WorkShokri,Reza,etal."Membershipinferenceattacksagainstmachinelearningmodels."
S&P,2017.We
could
also
assume
the
attacker
can
access
NoisyRealdata:
real
but
noisyVery
similar
to
the
real
datasetBut
with
a
few
features
(10%
or
20%)
are
randomly
resetMIA:The
Most
Well-known
WorkShokri,Reza,etal."Membershipinferenceattacksagainstmachinelearningmodels."
S&P,2017.Finally:
training
the
inference
model”in”:
in
the
training
set”out”:
:
in
the
test
setTrain
the
inference
model
with
dataset:
(prob1,
”in”),
(prob2,
”in”),
(prob3,
”out”)
(prob4,
”out”)MIA:The
Most
Well-known
WorkShokri,Reza,etal."Membershipinferenceattacksagainstmachinelearningmodels."
S&P,2017.How
well
can
MIA
perform?數(shù)據(jù)集:CIFAR-10、CIFAR-100、Purchases、Locations、Texashospitalstays、MNIST、UCIAdult(CensusIncome).White-box
MIANasr
et
al.“Comprehensiveprivacyanalysisofdeeplearning:Passiveandactivewhite-boxinferenceattacksagainstcentralizedandfederatedlearning.”
S&P,2019.
Hu,Hongsheng,etal."Membershipinferenceattacksonmachinelearning:Asurvey."
ACMComputingSurveys(CSUR)
54.11s(2022):1-37.White-boxvs
Black-boxWhite-box
MIANasr
et
al."Comprehensiveprivacyanalysisofdeeplearning:Passiveandactivewhite-boxinferenceattacksagainstcentralizedandfederatedlearning."
S&P,2019.抽取特征:概率、中間層激活、梯度無監(jiān)督設置下的重構損失推理結果Limitations
of
MIAConstructing
shadow
modelsAssuming
access
to
some
data
or
prior
knowledgeOverfitting
is
a
mustLimited
to
classification
modelsLimited
to
small
modelsAddressing
Limitations
of
MIASalemetal."ML-Leaks:ModelandDataIndependentMembershipInferenceAttacksandDefensesonMachineLearningModels."
NDSS,2019.Model
and
Data
Independent
MIAAddressing
Limitations
of
MIALong,Yunhui,etal."Apragmaticapproachtomembershipinferencesonmachinelearningmodels."
EuroS&P,2020.Attacking
non-overfitting
DNNsFocusing
on
minimizingfalsepositives目標問題:樣本A/B在哪個模型的訓練數(shù)據(jù)里?Addressing
Limitations
of
MIALeino
&
Fredrikson."StolenMemories:LeveragingModelMemorizationforCalibratedWhite-BoxMembershipInference."
USENIXSecurity,2020.More
practical
white-box
threat
modelThe
adversary
only
knows
the
model
but
not
the
data
distribution利用詭異的獨家記憶進行成員推理Training
imagesInternal
explanations
Pink
background
explanation
of
Tony
BlairAddressing
Limitations
of
MIAHayes,Jamie,etal."Logan:Membershipinferenceattacksagainstgenerativemodels."
arXivpreprintarXiv:1705.07663
(2017).Extension
to
generative
models充分利用判別器的判別能力:高置信度的大概率來自原始訓練數(shù)據(jù)集Metric-guided
MIAYeom,Samuel,etal.“Privacyriskinmachinelearning:Analyzingtheconnectiontooverfitting.”
CSF,
2018.
Salemetal."ML-Leaks:ModelandDataIndependentMembershipInferenceAttacksandDefensesonMachineLearningModels."
NDSS,2019.Metric
based
Anomaly
detection預測正確性:預測正確的就是成員預測損失:高于訓練樣本平均損失的是成員預測置信度:有概率接近1的是成員預測熵:低概率熵的是成員修正預測熵:不同類別區(qū)別考慮A
Summary
of
Existing
MIAsUsed
DatasetsImage:CIFAR-10,CIFAR-100,MNIST,Fashion-MNIST,YaleFace,ChestX-ray8,SVHN,CelebA,ImageNetTabulate:Adult,Foursquare,Purchase-100,Texas100,Location,etc.Audio:LibriSpeech,TIMIT,TED
Text:Weibo,TweetEmoInt,SATED,Dislogs,Redditcomments,Cora,
Pubmed,CitesserHu,Hongsheng,etal.“Membershipinferenceattacksonmachinelearning:A
survey.”
ACMComputingSurveys,
2022.A
Summary
of
Existing
MIAsTargetmodels:Onimage:Multi-layerCNN+1or2FC(>5papersused2-4layersCNN)Alexnet,ResNet18,ResNet50,VGG16,VGG19,DenseNet121,Efficient-netv2,EfficientNetB0GAN:InfoGAN,PGGAN,WGANGP,DCGAN,MEDGAN,andVAEGANOntabulate
data:FConlymodelsOntext:Multi-layerCNN,multi-layerRNN/LSTM,
transformers(e.g.,BERT,GPT-2)Onaudio:Hybridsystem:HMM-DNNmodelEnd-to-end:Multi-layerLSTM/RNN/GRUMLaaS(Online):GooglePredictionAPI,AmazonMLMembership
Inference
AttackDifferential
PrivacyDifferential
PrivacyFinite
Difference
and
Derivativeh
tends
to
be
small(zero)通過函數(shù)在某一點隨微小擾動的變化可以估計在這一點的梯度如果對數(shù)據(jù)集進行微小擾動呢?Differential
PrivacyFinite
Difference
->
Differential
Privacy數(shù)據(jù)集的微小變化會導致多大的算法輸出變化?
函數(shù)
輸入值
Differential
Privacy
數(shù)據(jù)集的微小變化會導致多大的算法輸出變化?
Differential
Privacy
Dwork,Cynthia."Differentialprivacy:Asurveyofresults."
ICTAMC,Heidelberg,2008.Properties
of
DPMcSherry,FrankD.“Privacyintegratedqueries:anextensibleplatformforprivacy-preservingdataanalysis.”
ACM
SIGMOD,2009.How
to
Obtain
a
Differentially
Private
Model?思考:如何讓自己的聲音不被發(fā)現(xiàn)??Measuring
SensitivityNissimandAdam.“Smoothsensitivityandsamplinginprivatedataanalysis.”
STOC,2007.Noise
Models幾種噪聲添加機制拉普拉斯機制(Laplacian)高斯機制(Gaussian)指數(shù)機制:離散->
概率;確定->不確定The
Laplace
Mechanism拉普拉斯機制(Laplace
Mechanism)
SaTML2023-GautamKamath-AnIntroductiontoDifferentialPrivacyThe
Laplace
Mechanism拉普拉斯機制(Laplace
Mechanism)
SaTML2023-GautamKamath-AnIntroductiontoDifferentialPrivacyThe
Laplace
Mechanism
SaTML2023-GautamKamath-AnIntroductiontoDifferentialPrivacyLaplace
vs.
Gaussian
SaTML2023-GautamKamath-AnIntroductiontoDifferentialPrivacyDP
+
Deep
Learning問題:在哪里添加噪聲?輸入空間模型空間輸出空間輸入空間DP差分隱私預處理訓練數(shù)據(jù)dp-GAN
pipelineZhang
et
al.“Differentiallyprivatereleasingviadeepgenerativemodel(technicalreport).”
arXiv:1801.01594
(2018).輸入空間DP隨機平滑Randomized
Smoothing隨機平滑:可驗證對抗防御Cohen,Jeremy,ElanRosenfeld,andZicoKolter."Certifiedadversarialrobustnessviarandomizedsmoothing."
ICML,2019.用隨機噪聲填充輸入空間,得到對抗魯棒性邊界模型空間DPAbadi,Martin,etal.“Deeplearningwithdifferentialprivacy.”
CCS,
2016.差分隱私平滑模型參數(shù):DP-SGD算法DP-SGD性能SaTML2023-GautamKamath-AnIntroductiontoDifferentialPrivacyDP-SGD性能SaTML2023-GautamKamath-AnIntroductiontoDifferentialPrivacyDP-SGD性能SaTML2023-GautamKamath-AnIntroductiontoDifferentialPrivacyMore
Practical
Solution?1:
Training
on
public
dat
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版酒店客房窗簾布藝設計與安裝合同3篇
- 二零二四商鋪買賣合同補充條款協(xié)議3篇
- 二零二五版公共場所安全設備安裝與維護合同3篇
- 二零二五版出口食品支付與質量檢驗合同3篇
- 二零二四南通單位勞動合同管理與培訓協(xié)議3篇
- 二零二五版辦公耗材環(huán)保認證采購合同3篇
- 2025年校園綠化與校園環(huán)境監(jiān)測合同3篇
- 2025年文化旅游項目開發(fā)權轉讓合同3篇
- 二零二五年度醫(yī)療保健行業(yè)臨時用工服務合同4篇
- 2025年消防設施安裝與消防通道改造及維護服務合同3篇
- 2024年公務員考試《公共基礎知識》全真模擬試題1000題及答案
- DB3301T 0382-2022 公共資源交易開評標數(shù)字見證服務規(guī)范
- 幼兒教育專業(yè)國家技能人才培養(yǎng)工學一體化課程設置方案
- 2025年會計從業(yè)資格考試電算化考試題庫及答案(共480題)
- 江蘇省無錫市2023-2024學年八年級上學期期末數(shù)學試題(原卷版)
- DL-T 5876-2024 水工瀝青混凝土應用酸性骨料技術規(guī)范
- GB/T 44889-2024機關運行成本統(tǒng)計指南
- 2024年6月英語六級考試真題及答案(第2套)
- 職業(yè)院校技能大賽(高職組)市政管線(道)數(shù)字化施工賽項考試題庫(含答案)
- 危險化學品目錄(2024版)
- 華為經營管理-華為的股權激勵(6版)
評論
0/150
提交評論