版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省寧波市東恩中學2025屆高二數(shù)學第一學期期末統(tǒng)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓=1(a>b>0)的右焦點為F,橢圓上的A,B兩點關(guān)于原點對稱,|FA|=2|FB|,且·≤a2,則該橢圓離心率的取值范圍是()A.(0,] B.(0,]C.,1) D.,1)2.如圖,在正方體中,異面直線與所成的角為()A. B.C. D.3.若雙曲線的漸近線方程為,則的值為()A.2 B.3C.4 D.64.下列命題中正確的是()A.拋物線的焦點坐標為B.拋物線的準線方程為x=?1C.拋物線的圖象關(guān)于x軸對稱D.拋物線的圖象關(guān)于y軸對稱5.函數(shù),則不等式的解集是()A. B.C. D.6.甲、乙、丙、丁四人站成一列,要求甲站在最前面,則不同的排法有()A.24種 B.6種C.4種 D.12種7.在平行六面體中,點P在上,若,則()A. B.C. D.8.記等差數(shù)列的前n項和為,若,,則等于()A.5 B.31C.38 D.419.已知a,b為正實數(shù),且,則的最小值為()A.1 B.2C.4 D.610.《周髀算經(jīng)》是中國最古老的天文學和數(shù)學著作,書中提到:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣的日影子長依次成等差數(shù)列.若冬至、大寒、雨水的日影子長的和是尺,芒種的日影子長為尺,則冬至的日影子長為()A.尺 B.尺C.尺 D.尺11.已知函數(shù)的導函數(shù)的圖像如圖所示,則下列判斷正確的是()A.在區(qū)間上,函數(shù)增函數(shù) B.在區(qū)間上,函數(shù)是減函數(shù)C.為函數(shù)的極小值點 D.2為函數(shù)的極大值點12.命題,,則為()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.直線與圓相交于A,B兩點,則______14.已知點P為橢圓上的任意一點,點,分別為該橢圓的左、右焦點,則的最大值為______________.15.2021年7月24日,在東京奧運會女子10米氣步槍決賽中,中國選手楊倩以251.8環(huán)的總成績奪得金牌,為中國代表團摘得本屆奧運會首金.已知楊倩其中5次射擊命中的環(huán)數(shù)如下:10.8,10.6,10.6,10.7,9.8,則這組數(shù)據(jù)的方差為______16.若等比數(shù)列的前n項和為,且,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知p:方程所表示的曲線為焦點在x軸上的橢圓;q:當時,函數(shù)恒成立.(1)若p為真,求實數(shù)t的取值范圍;(2)若為假命題,且為真命題,求實數(shù)t的取值范圍18.(12分)在平面直角坐標系xOy中,曲線1與坐標軸的交點都在圓C上(1)求圓C的方程;(2)設(shè)過點P(0,-2)的直線l與圓C交于A,B兩點,且AB=2,求l的方程19.(12分)在平面直角坐標系內(nèi),已知的三個頂點坐標分別為(1)求邊垂直平分線所在的直線的方程;(2)若的面積為5,求點的坐標20.(12分)已知橢圓經(jīng)過點,且離心率為(1)求橢圓C的標準方程;(2)已知點A,B是橢圓C的上,下頂點,點P是直線上的動點,直線PA與橢圓C的另一交點為E,直線PB與橢圓C的另一交點為F.證明:直線EF過定點21.(12分)已知拋物線的焦點為F,以F和準線上的兩點為頂點的三角形是邊長為的等邊三角形,過的直線交拋物線E于A,B兩點(1)求拋物線E的方程;(2)是否存在常數(shù),使得,如果存在,求的值,如果不存在,請說明理由;(3)證明:內(nèi)切圓的面積小于22.(10分)在中,內(nèi)角,,的對邊分別為,,.若,且.(1)求角的大??;(2)若的面積為,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】如圖設(shè)橢圓的左焦點為E,根據(jù)題意和橢圓的定義可知,利用余弦定理求出,結(jié)合平面向量的數(shù)量積計算即可.【詳解】由題意知,如圖,設(shè)橢圓的左焦點為E,則,因為點A、B關(guān)于原點對稱,所以四邊形為平行四邊形,由,得,,在中,,所以,由,得,整理,得,又,所以.故選:B2、C【解析】作出輔助線,找到異面直線所成的角,利用幾何性質(zhì)進行求解.【詳解】連接與,因為,則為所求,又是正三角形,.故選:C.3、A【解析】根據(jù)雙曲線方程確定焦點位置,再根據(jù)漸近線方程為求解.【詳解】因為雙曲線所以焦點在x軸上,又因為漸近線方程為,所以,所以.故選:A【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了理解辨析的能力,屬于基礎(chǔ)題.4、C【解析】根據(jù)拋物線的性質(zhì)逐項分析可得答案.【詳解】拋物線的焦點坐標為,故A錯誤;拋物線的準線方程為,故B錯誤;拋物線的圖象關(guān)于x軸對稱,故C正確,D錯誤;故選:C.5、A【解析】利用導數(shù)判斷函數(shù)單調(diào)遞增,然后進行求解.【詳解】對函數(shù)進行求導:,因為,,所以,因為,所以f(x)是奇函數(shù),所以在R上單調(diào)遞增,又因為,所以的解集為.故選:A6、B【解析】由已知可得只需對剩下3人全排即可【詳解】解:甲、乙、丙、丁四人站成一列,要求甲站在最前面,則只需對剩下3人全排即可,則不同的排法共有,故選:B7、C【解析】利用空間向量基本定理,結(jié)合空間向量加法的法則進行求解即可.【詳解】因為,,所以有,因此,故選:C8、A【解析】設(shè)等差數(shù)列的公差為d,首先根據(jù)題意得到,再解方程組即可得到答案.【詳解】解:設(shè)等差數(shù)列的公差為d,由題知:,解得.故選:A.9、D【解析】利用基本不等式“1”的妙用求最值.【詳解】因為a,b為正實數(shù),且,所以.當且僅當,即時取等號.故選:D10、D【解析】根據(jù)題意轉(zhuǎn)化為等差數(shù)列,求首項.【詳解】設(shè)冬至的日影長為,雨水的日影長為,根據(jù)等差數(shù)列的性質(zhì)可知,芒種的日影長為,,解得:,,所以冬至的日影長為尺.故選:D11、D【解析】根據(jù)導函數(shù)與原函數(shù)的關(guān)系可求解.【詳解】對于A,在區(qū)間,,故A不正確;對于B,在區(qū)間,,故B不正確;對于C、D,由圖可知在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,且,所以為函數(shù)的極大值點,故C不正確,D正確.故選:D12、B【解析】直接利用特稱命題的否定是全稱命題寫出結(jié)果即可.【詳解】命題,為特稱命題,而特稱命題的否定是全稱命題,所以命題,,則為:,.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】利用弦心距、半徑與弦長的幾何關(guān)系,結(jié)合點線距離公式即可求弦長.【詳解】由題設(shè),圓心為,則圓心到直線距離為,又圓的半徑為,故.故答案為:14、【解析】利用正弦定理表示出,再求t,再利用求的最大值即可.【詳解】在中,由正弦定理得,所以,,即求的最大值,也就是求t的最小值,而,即最大時,由橢圓的性質(zhì)知當P為橢圓上頂點時最大,此時,,所以,所以的最大值是1,,所以,故答案為:.【點睛】本題考查橢圓焦點三角形的問題,考查正弦定理的應(yīng)用.15、128【解析】先求均值,再由方差公式計算【詳解】由已知,所以,故答案為:16、5【解析】根據(jù)題意和等比數(shù)列的求和公式,求得,結(jié)合求和公式,即可求解.【詳解】因為,若時,可得,故,所以,化簡得,整理得,解得或,因為,解得,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由給定條件結(jié)合橢圓標準方程的特征列不等式求解作答.(2)求命題q真時的t值范圍,再借助“或”聯(lián)結(jié)的命題為真命題求解作答.【小問1詳解】因方程所表示的曲線為焦點在x軸上的橢圓,則有,解得,所以實數(shù)t的取值范圍是.【小問2詳解】,則有,當且僅當,即時取“=”,即,因當時,函數(shù)恒成立,則,解得,命題q為真命題有,因為假命題,且為真命題,則與一真一假,當p真q假時,,當p假q真時,,所以實數(shù)t的取值范圍是.18、(1)(2)或【解析】(1)求出曲線與坐標軸的交點坐標,設(shè)出圓的一般方程,代入求解;(2)分類討論,斜率不存在時,直接驗證,斜率存在時,設(shè)直線方程,求出圓心到直線的距離,由勾股定理求解【小問1詳解】時,,又得,,所以三交點為,設(shè)圓方程為,則,解得,圓方程為;【小問2詳解】由(1)知圓標準方程為,圓心為,半徑為,直線斜率不存在時,直線為,它與圓的兩交點為,滿足題意;斜率存在時,設(shè)直線方程為,即,圓心到的距離為,又,所以,,直線方程為即所以直線方程是:或19、(1);(2)或【解析】(1)由題意直線的斜率公式,兩直線垂直的性質(zhì),求出的斜率,再用點斜式求直線的方程(2)根據(jù)的面積為5,求得點到直線的距離,再利用點到直線的距離公式,求得的值【詳解】解:(1),,的中點的坐標為,又設(shè)邊的垂直平分線所在的直線的斜率為則,可得的方程為,即邊的垂直平分線所在的直線的方程(2)邊所在的直線方程為設(shè)邊上的高為即點到直線的距離為且解得解得或,點的坐標為或20、(1);(2)證明見解析.【解析】(1)根據(jù)題意,列出的方程組,通過解方程組,即可求出答案.(2)法一:設(shè),,;當時,根據(jù)點的坐標寫出直線PA的方程,與橢圓方程聯(lián)立,可求出點的坐標;同理可求出點的坐標,然后即可求出直線EF的方程,從而證明直線EF過定點.法二:首先根據(jù)時直線EF的方程為,可判斷出直線EF過的定點M必在y軸上,設(shè)為;然后同方法一,求出點,的坐標,根據(jù),即可求出的值.【小問1詳解】由題意,知,解得,所以橢圓C的標準方程為【小問2詳解】法一:設(shè),,,當時,直線PA的方程為,由,得解得,所以.所以同理可得所以直線EF的斜率為,所以直線EF的方程為,整理得,所以直線EF過定點當時,點E,F(xiàn)在y軸上,EF的方程為,顯然過點綜上,直線EF過定點法二:當點P在y軸上時,E,F(xiàn)分別與B,A重合,直線EF的方程為,若直線EF過定點M,則M必在y軸上,可設(shè)當點P不在y軸上時,設(shè),,,則直線PA的方程為,由,得,解得,所以,所以,同理可得,所以,因為E,F(xiàn),M三點共線,所以,所以,整理得,因為,所以,解得,即所以直線EF過定點21、(1);(2)存在,1;(3)證明見解析.【解析】(1)根據(jù)幾何關(guān)系即可求p;(2)求解為定值1,即可求λ=1;(3)先求的面積,再由(為三角周長)可求內(nèi)切圓半徑r.【小問1詳解】由題意焦點到準線的距離等于該正三角形一條邊上的高線,因此,∴拋物線E的方程為【小問2詳解】設(shè)直線的斜率為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度面料原材料采購與倉儲服務(wù)合同范本3篇
- 2025年度個人心理咨詢傭金代理協(xié)議范本4篇
- 二零二五年度嬰幼兒配方奶粉采購合同規(guī)范4篇
- 二零二五年度航空物流配送及清關(guān)服務(wù)合同4篇
- 2025年度美容院美容院員工社會保險繳納合同4篇
- 2025年度商鋪物業(yè)管理與應(yīng)急響應(yīng)預(yù)案合同4篇
- 2024-2025年中國互聯(lián)網(wǎng)汽車金融行業(yè)市場深度分析及發(fā)展前景預(yù)測報告
- 2025年度模特形象代言效果跟蹤分析合同4篇
- 2023-2024年項目部治理人員安全培訓考試題含下載答案可打印
- 2024項目部安全管理人員安全培訓考試題含答案【新】
- 2024年大宗貿(mào)易合作共贏協(xié)議書模板
- 新聞記者證600道考試題-附標準答案
- 變壓器搬遷施工方案
- 單位轉(zhuǎn)賬個人合同模板
- 八年級語文下冊 成語故事 第十五課 諱疾忌醫(yī) 第六課時 口語交際教案 新教版(漢語)
- 中考語文二輪復習:記敘文閱讀物象的作用(含練習題及答案)
- 2024年1月高考適應(yīng)性測試“九省聯(lián)考”數(shù)學 試題(學生版+解析版)
- (正式版)JBT 11270-2024 立體倉庫組合式鋼結(jié)構(gòu)貨架技術(shù)規(guī)范
- EPC項目采購階段質(zhì)量保證措施
- T-NAHIEM 101-2023 急診科建設(shè)與設(shè)備配置標準
- 針灸與按摩綜合療法
評論
0/150
提交評論