四川省內(nèi)江市威遠縣中學2025屆數(shù)學高一上期末質量跟蹤監(jiān)視試題含解析_第1頁
四川省內(nèi)江市威遠縣中學2025屆數(shù)學高一上期末質量跟蹤監(jiān)視試題含解析_第2頁
四川省內(nèi)江市威遠縣中學2025屆數(shù)學高一上期末質量跟蹤監(jiān)視試題含解析_第3頁
四川省內(nèi)江市威遠縣中學2025屆數(shù)學高一上期末質量跟蹤監(jiān)視試題含解析_第4頁
四川省內(nèi)江市威遠縣中學2025屆數(shù)學高一上期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

四川省內(nèi)江市威遠縣中學2025屆數(shù)學高一上期末質量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的圖像大致為()A. B.C. D.2.已知點P(3,4)在角的終邊上,則的值為()A B.C. D.3.若函數(shù)的圖像向左平移個單位得到的圖像,則A. B.C. D.4.已知函數(shù),若有且僅有兩個不同實數(shù),,使得則實數(shù)的值不可能為A. B.C. D.5.若曲線與直線始終有交點,則的取值范圍是A. B.C. D.6.已知集合A={x|x<2},B={x≥1},則A∪B=()A. B.C. D.R7.設為大于1的正數(shù),且,則,,中最小的是A. B.C. D.三個數(shù)相等8.已知集合和關系的韋恩圖如下,則陰影部分所表示的集合為()A. B.C. D.9.已知命題:,,則()A.:, B.:,C.:, D.:,10.對于任意實數(shù),給定下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,且,則的最小值為________.12.若數(shù)據(jù)的方差為3,則數(shù)據(jù)的方差為__________13.已知.若實數(shù)m滿足,則m的取值范圍是__14.已知直線,互相平行,則__________.15.已知扇形的弧長為,且半徑為,則扇形的面積是__________.16.函數(shù)在上為單調(diào)遞增函數(shù),則實數(shù)的取值范圍是______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,△ABC中,AB=8,BC=10,AC=6,DB⊥平面ABC,且AE∥FC∥BD,BD=3,F(xiàn)C=4,AE=5,求此幾何體的體積18.已知函數(shù)是偶函數(shù)(其中a,b是常數(shù)),且它的值域為(1)求的解析式;(2)若函數(shù)是定義在R上的奇函數(shù),且時,,而函數(shù)滿足對任意的,有恒成立,求m的取值范圍19.已知直線及點.(1)證明直線過某定點,并求該定點的坐標;(2)當點到直線的距離最大時,求直線的方程.20.求滿足下列條件的直線方程.(1)經(jīng)過點A(-1,-3),且斜率等于直線3x+8y-1=0斜率的2倍;(2)過點M(0,4),且與兩坐標軸圍成三角形的周長為12.21.已知函數(shù).(1)用五點法作函數(shù)在區(qū)間上的圖象;(2)解關于的方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】先判斷函數(shù)為偶函數(shù)排除;再根據(jù)當時,,排除得到答案.【詳解】,偶函數(shù),排除;當時,,排除故選【點睛】本題考查了函數(shù)圖像的識別,通過函數(shù)的奇偶性和特殊函數(shù)點可以排除選項快速得到答案.2、D【解析】利用三角函數(shù)的定義即可求出答案.【詳解】因為點P(3,4)在角的終邊上,所以,,故選:D【點睛】本題考查了三角函數(shù)的定義,三角函數(shù)誘導公式,屬于基礎題.3、A【解析】函數(shù)的圖象向左平移個單位,得到的圖象對應的函數(shù)為:本題選擇A選項.4、D【解析】利用輔助角公式化簡,由,可得,根據(jù)在上有且僅有兩個最大值,可求解實數(shù)的范圍,從而可得結果【詳解】函數(shù);由,可得,因為有且僅有兩個不同的實數(shù),,使得所以在上有且僅有兩個最大值,因為,,則;所以實數(shù)的值不可能為,故選D【點睛】本題主要考查輔助角公式的應用、三角函數(shù)的圖象與性質的應用問題,也考查了數(shù)形結合思想,意在考查綜合應用所學知識解答問題的能力,屬于基礎題5、A【解析】本道題目先理解的意義,實則為一個半圓,然后利用圖像,繪制出該直線與該圓有交點的大致位置,計算出b的范圍,即可.【詳解】要使得這兩條曲線有交點,則使得直線介于1與2之間,已知1與圓相切,2過點(1,0),則b分別為,故,故選A.【點睛】本道題目考查了圓與直線的位置關系,做此類題可以結合圖像,得出b的范圍.6、D【解析】利用并集定義直接求解即可【詳解】∵集合A={x|x<2},B={x≥1},∴A∪B=R.故選D【點睛】本題考查并集的求法,考查并集定義、不等式性質等基礎知識,考查運算求解能力,是基礎題7、C【解析】令,則,所以,,對以上三式兩邊同時乘方,則,,,顯然最小,故選C.8、B【解析】首先判斷出陰影部分表示,然后求得,再求得.【詳解】依題意可知,,且陰影部分表示.,所以.故選:B【點睛】本小題主要考查根據(jù)韋恩圖進行集合的運算,屬于基礎題.9、C【解析】根據(jù)全稱命題的否定是特稱命題進行否定即可得答案.【詳解】解:因為全稱命題的否定為特稱命題,所以命題:,的否定為::,.故選:C.10、C【解析】利用特殊值判斷A、B、D,根據(jù)不等式的性質證明C;【詳解】解:對于A:當時,若則,故A錯誤;對于B:若,,,,滿足,則,,不成立,故B錯誤;對于C:若,則,所以,故C正確;對于D:若,滿足,但是,故D錯誤;故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、12【解析】,展開后利用基本不等式可求【詳解】∵,,且,∴,當且僅當,即,時取等號,故的最小值為12故答案為:1212、12【解析】所求方差為,填13、【解析】由題意可得,進而解不含參數(shù)的一元二次不等式即可求出結果.【詳解】由題意可知,即,所以,因此,故答案:.14、【解析】由兩直線平行的充要條件可得:,即:,解得:,當時,直線為:,直線為:,兩直線重合,不合題意,當時,直線為:,直線為:,兩直線不重合,綜上可得:.15、##【解析】由扇形面積公式可直接求得結果.【詳解】扇形面積.故答案為:.16、【解析】令∴即函數(shù)的增區(qū)間為,又函數(shù)在上為單調(diào)遞增函數(shù)∴令得:,即,得到:,又∴實數(shù)的取值范圍是故答案為三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、96【解析】,取CM=AN=BD,連接DM,MN,DN,用“分割法”把原幾何體分割成一個直三棱柱和一個四棱錐.所以V幾何體=V三棱柱+V四棱錐試題解析:如圖,取CM=AN=BD,連接DM,MN,DN,用“分割法”把原幾何體分割成一個直三棱柱和一個四棱錐.所以V幾何體=V三棱柱+V四棱錐.由題知三棱柱ABC-NDM的體積為V1=×8×6×3=72.四棱錐D-MNEF體積為V2=S梯形MNEF·DN=××(1+2)×6×8=24,則幾何體的體積為V=V1+V2=72+24=96.點睛:空間幾何體體積問題的常見類型及解題策略(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺體,則可直接利用公式進行求解(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉換法、分割法、補形法等方法進行求解(3)若以三視圖的形式給出幾何體,則應先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解18、(1)(2)【解析】(1)由偶函數(shù)的定義結合題意可求出,再由函數(shù)的值域為可求出,從而可求出函數(shù)解析式,(2)由題意求出的解析式,判斷出當時,,從而將問題轉化為滿足對任意的恒成立,設,則對恒成立,然后利用二次函數(shù)的性質求解【小問1詳解】由題∵是偶函數(shù),∴,∴∴或,又∵的值域為,∴,∴,∴或,∴;【小問2詳解】若函數(shù)是定義在R上的奇函數(shù),且時,,由(1)知,∴時,;時,;當時,,顯然時,,若,則又滿足對任意的,有恒成立,∴對任意的恒成立,即滿足對任意的恒成立,即,設,則對恒成立,設,∵函數(shù)的圖像開口向上,∴只需,∴,∴所求m的取值范圍是.19、(1)證明見解析,定點坐標為;(2)15x+24y+2=0.【解析】(1)直線l的方程可化為a(2x+y+1)+b(-x+y-1)=0,由,即可解得定點;(2)由(1)知直線l恒過定點A,當直線l垂直于直線PA時,點P到直線l的距離最大,利用點斜式求直線方程即可.試題解析:(1)證明:直線l的方程可化為a(2x+y+1)+b(-x+y-1)=0,由,得,所以直線l恒過定點.(2)由(1)知直線l恒過定點A,當直線l垂直于直線PA時,點P到直線l的距離最大.又直線PA的斜率,所以直線l的斜率kl=-.故直線l的方程為,即15x+24y+2=0.20、(1)3x+4y+15=0(2)4x+3y-12=0或4x-3y+12=0.【解析】根據(jù)直線經(jīng)過點A,再根據(jù)斜率等于直線3x+8y-1=0斜率2倍求出斜率的值,然后根據(jù)直線方程的點斜式寫出直線的方程,化為一般式;直線經(jīng)過點M(0,4),說明直線在y軸的截距為4,可設直線在x軸的截距為a,利用三角形周長為12列方程求出a,利用直線方程的截距式寫出直線的方程,然后化為一般方程.試題解析:(1)因為3x+8y-1=0可化為y=-x+,所以直線3x+8y-1=0的斜率為-,則所求直線的斜率k=2×(-)=-又直線經(jīng)過點(-1,-3),因此所求直線的方程為y+3=-(x+1),即3x+4y+15=0.(2)設直線與x軸的交點為(a,0),因為點M(0,4)在y軸上,所以由題意有4++|a|=12,解得a=±3,所以所求直線的方程為或,即4x+3y-12=0或4x-3y+12=0.【點睛】當直線經(jīng)過點A,并給出斜率的條件時,根據(jù)斜率與已知直線的斜率關系求出斜率值,然后根據(jù)直線方程的點斜式寫出直線的方程,化為一般式;當涉及到直線與梁坐標軸所圍成的三角形的周長和面積時,一般利用直線方程的截距式解決問題較方便一些,但使用點斜式也好,截距式也好,它們都有不足之處,點斜式只能表達斜率存在的直線,截距式只能表達截距存

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論