版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆甘肅省師范大學附屬中學高二數(shù)學第一學期期末檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則()A. B.1C. D.2.已知數(shù)列的前項和為,當時,()A.11 B.20C.33 D.353.若過點(2,1)的圓與兩坐標軸都相切,則圓心到直線的距離為()A. B.C. D.4.如圖,某圓錐的軸截面是等邊三角形,點是底面圓周上的一點,且,點是的中點,則異面直線與所成角的余弦值是()A. B.C. D.5.已知點,點在拋物線上,過點的直線與直線垂直相交于點,,則的值為()A. B.C. D.6.已知數(shù)列是遞減的等比數(shù)列,的前項和為,若,,則=()A.54 B.36C.27 D.187.點分別為橢圓左右兩個焦點,過的直線交橢圓與兩點,則的周長為()A.32 B.16C.8 D.48.已知圓M與直線與都相切,且圓心在上,則圓M的方程為()A. B.C. D.9.已知,則點關(guān)于平面的對稱點的坐標是()A. B.C. D.10.在直三棱柱中,,M,N分別是,的中點,,則AN與BM所成角的余弦值為()A. B.C. D.11.一質(zhì)點從出發(fā),做勻速直線運動,每秒的速度為秒后質(zhì)點所處的位置為()A. B.C. D.12.設(shè),,則與的等比中項為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓被直線所截得弦的最短長度為___________.14.高二某位同學參加物理、政治科目的學考,已知這位同學在物理、政治科目考試中得A的概率分別為、,這兩門科目考試成績的結(jié)果互不影響,則這位考生至少得1個A的概率為______15.若分別是平面的法向量,且,,,則的值為________.16.二項式的展開式中,項的系數(shù)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是正項數(shù)列,,且.(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項和為,若對恒成立,求實數(shù)的取值范圍.18.(12分)如圖,在直三棱柱中,,是中點.(1)求點到平面的的距離;(2)求平面與平面夾角的余弦值;19.(12分)已知圓C:,直線l:.(1)當a為何值時,直線l與圓C相切;(2)當直線l與圓C相交于A,B兩點,且時,求直線l的方程.20.(12分)已知等差數(shù)列的前n項和為,且,(1)求數(shù)列的通項公式;(2)若,求k的值21.(12分)某市對新形勢下的中考改革工作進行了全面的部署安排.中考錄取科目設(shè)置分為固定賦分科目和非固定賦分科目,固定賦分科目(語文、數(shù)學、英語、物理、體育與健康)按卷面分計算;非固定賦分科目(化學、生物、道德與法治、歷史、地理)按學生在該學科中的排名進行等級賦分,即根據(jù)改革方案,將每門等級考試科目中考生的原始成績從高到低分為A,,,,,,,共個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為,,,,,,,.等級考試科目成績計入考生總成績時,將A至等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到,,,,,,,八個分數(shù)區(qū)間,得到考生的等級成績.該市學生的中考化學原始成績制成頻率分布直方圖如圖所示:(1)求圖中的值;(2)估計該市學生中考化學原始成績不少于多少分才能達到等級及以上(含等級)?(3)由于中考改革后學生各科原始成績不再返回學校,只告知各校參考學生的各科平均成績及方差.已知某校初三共有名學生參加中考,為了估計該校學生的化學原始成績達到等級及以上(含等級)的人數(shù),將該校學生的化學原始成績看作服從正態(tài)分布,并用這名學生的化學平均成績作為的估計值,用這名學生化學成績的方差作為的估計值,計算人數(shù)(結(jié)果保留整數(shù))附:,,.22.(10分)某校從高三年級學生中隨機抽取名學生的某次數(shù)學考試成績,將其成績分成,,,,的組,制成如圖所示的頻率分布直方圖.(1)求圖中的值;(2)估計這組數(shù)據(jù)的平均數(shù);(3)若成績在內(nèi)的學生中男生占.現(xiàn)從成績在內(nèi)的學生中隨機抽取人進行分析,求人中恰有名女生的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先根據(jù)共軛復(fù)數(shù)的定義可得,再根據(jù)復(fù)數(shù)的運算法則即可求出【詳解】因為,所以故選:B2、B【解析】由數(shù)列的性質(zhì)可得,計算可得到答案.【詳解】由題意,.故答案為B.【點睛】本題考查了數(shù)列的前n項和的性質(zhì),屬于基礎(chǔ)題.3、B【解析】由題意可知圓心在第一象限,設(shè)圓心的坐標為,可得圓的半徑為,寫出圓的標準方程,利用點在圓上,求得實數(shù)的值,利用點到直線的距離公式可求出圓心到直線的距離.【詳解】由于圓上的點在第一象限,若圓心不在第一象限,則圓與至少與一條坐標軸相交,不合乎題意,所以圓心必在第一象限,設(shè)圓心的坐標為,則圓的半徑為,圓的標準方程為.由題意可得,可得,解得或,所以圓心的坐標為或,圓心到直線的距離均為;圓心到直線的距離均為圓心到直線的距離均為;所以,圓心到直線的距離為.故選:B.【點睛】本題考查圓心到直線距離的計算,求出圓的方程是解題的關(guān)鍵,考查計算能力,屬于中等題.4、C【解析】建立空間直角坐標系,分別得到,然后根據(jù)空間向量夾角公式計算即可.【詳解】以過點且垂直于平面的直線為軸,直線,分別為軸,軸,建立如圖所示的空間直角坐標系.不妨設(shè),則根據(jù)題意可得,,,,所以,,設(shè)異面直線與所成角為,則.故選:C.5、D【解析】由題,由于過拋物線上一點的直線與直線垂直相交于點,可得,又,故,所以的坐標為,由余弦定理可得.故選:D.考點:拋物線的定義、余弦定理【點睛】本題主要考查拋物線的定義與性質(zhì),考查學生的計算能力,屬于中檔題6、C【解析】根據(jù)等比數(shù)列的性質(zhì)及通項公式計算求解即可.【詳解】由,解得或(舍去),,,故選:C7、B【解析】由題意結(jié)合橢圓的定義可得,而的周長等于,從而可得答案【詳解】解:由得,由題意得,所以的周長等于,故選:B8、A【解析】由題可設(shè),結(jié)合條件可得,即求.【詳解】∵圓心在上,∴可設(shè)圓心,又圓M與直線與都相切,∴,解得,∴,即圓的半徑為1,圓M的方程為.故選:A.9、C【解析】根據(jù)對稱性求得坐標即可.【詳解】點關(guān)于平面的對稱點的坐標是,故選:C10、D【解析】構(gòu)建空間直角坐標系,根據(jù)已知條件求AN與BM對應(yīng)的方向向量,應(yīng)用空間向量夾角的坐標表示求AN與BM所成角的余弦值.【詳解】建立如下圖所示的空間直角坐標系,∴,,,,∴,,∴,所以AN與BM所成角的余弦值為.故選:D11、A【解析】利用空間向量的線性運算即可求解.【詳解】2秒后質(zhì)點所處的位置為.故選:A【點睛】本題考查了空間向量的線性運算,考查了基本知識掌握的情況以及學生的綜合素養(yǎng),屬于基礎(chǔ)題.12、C【解析】利用等比中項的定義可求得結(jié)果.【詳解】由題意可知,與的等比中項為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先確定直線所過定點;由圓的方程可確定圓心和半徑,進而求得圓心到的距離,由此可知所求最短長度為.【詳解】由得:,直線恒過點;,在圓內(nèi);又圓的圓心為,半徑,圓心到點的距離,所截得弦的最短長度為.故答案為:.14、【解析】根據(jù)給定條件利用相互獨立事件、對立事件的概率公式計算作答.【詳解】依題意,這位考生至少得1個A對立事件為物理、政治科目考試都沒有得A,其概率為,所以這位考生至少得1個A的概率為.故答案為:15、-1或-2【解析】由題可得,即求.【詳解】依題意,,解得或.故答案為:或.16、80【解析】利用二項式的通項公式進行求解即可.【詳解】二項式的通項公式為:,令,所以項的系數(shù)為,故答案為:80三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由條件因式分解可得,從而得到,即可得出答案.(2)由(1)可得,由錯位相減法求和得到,由題意即即對恒成立,分析數(shù)列的單調(diào)性,得出答案.【小問1詳解】由,得∵∴∴∴數(shù)列是公比為2的等比數(shù)列.∵,∴.【小問2詳解】由(1)知,∴∴①∴②①-②得∴∴由對恒成立得對恒成立即對恒成立,又是遞減數(shù)列∴時得到最大值∴,即∴的取值范圍是.18、(1)(2)【解析】(1)以為原點,為軸,為軸,為軸建立空間直角坐標系,求出平面的法向量為,再利用公式計算即可;(2)易得平面的法向量為,設(shè)平面與平面的夾角為,再利用計算即可小問1詳解】解:(1)以為原點,為軸,為軸,為軸建立空間直角坐標系所以因為,設(shè)平面的法向量為,則有,得,令則,所以可以取,設(shè)點到平面的距離為,則,所以點到平面的的距離的距離為;【小問2詳解】(2)因為平面,取平面的法向量為設(shè)平面與平面的夾角為,所以平面與平面夾角的余弦值19、(1);(2)或.【解析】(1)根據(jù)圓心到直線的距離d等于圓的半徑r即可求得答案;(2)由并結(jié)合(1)即可求得答案.【小問1詳解】由圓:,可得,其圓心為,半徑,若直線與圓相切,則圓心到直線:距離,即,可得:.【小問2詳解】由(1)知圓心到直線的距離,因為,即,解得:,所以,整理可得:,解得:或,則直線的方程為或.20、(1)(2)10【解析】(1)設(shè)等差數(shù)列的公差為d,利用已知建立方程組,解之可求得數(shù)列的通項公式;(2)利用等差數(shù)列的前項和公式,化簡即可求解.【小問1詳解】解:設(shè)等差數(shù)列的公差為d,由已知,,得,解得,則;小問2詳解】解:由(1)得,則由,得或(舍去),所以的值為10.21、(1)(2)85(3)23【解析】(1)根據(jù)所有矩形面積之和等于1可得;(2)先根據(jù)矩形面積之和判斷達到等級的最低分數(shù)為x所在區(qū)間,然后根據(jù)矩形面積之和等于0.9可得;(3)由題知,所以由可得.【小問1詳解】由得【小問2詳解】由題意可知,要使等級達到等級及以上,則成績需超過的學生.因為,記達到等級的最低分數(shù)為x,則,則由,解得所以該市學生中考化學原始成績不少于85分才能達到等級及以上.【小問3詳解】由題知,因為所以故該校學生的化學原始成績達到等級及以上的人數(shù)大約為人.22、(1)(2)77(3)【解析】(1)根據(jù)給定條件結(jié)合頻率分布直方圖中各小矩形面積和為1的特點列式計算即得.(2)利用頻率分布直方圖求平均數(shù)的方法直接列式計算即得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度生態(tài)園區(qū)場地租賃合同標準范本6篇
- 二零二五年新能源發(fā)電設(shè)施建設(shè)泥工勞務(wù)合同3篇
- 二零二五版海上貨物運輸合同適用范圍與船舶代理服務(wù)合同3篇
- 二零二五年度環(huán)境安全檢測技術(shù)服務(wù)合同2篇
- 二零二五年度防火門銷售、推廣及市場拓展合同3篇
- 二零二五版智慧城市基礎(chǔ)設(shè)施建設(shè)項目施工合同6篇
- 二零二五版新材料研發(fā)中心與實驗員勞務(wù)合同2篇
- 二零二五年度游戲運營合同3篇
- 二零二五版醫(yī)療器械貼牌研發(fā)及銷售合同3篇
- 二零二五版304不銹鋼建筑結(jié)構(gòu)材料采購合同2篇
- 品質(zhì)經(jīng)理工作總結(jié)
- 供電搶修述職報告
- 集成電路設(shè)計工藝節(jié)點演進趨勢
- 新型電力系統(tǒng)簡介演示
- 特種設(shè)備行業(yè)團隊建設(shè)工作方案
- 眼內(nèi)炎患者護理查房課件
- 肯德基經(jīng)營策略分析報告總結(jié)
- 買賣合同簽訂和履行風險控制
- 中央空調(diào)現(xiàn)場施工技術(shù)總結(jié)(附圖)
- 水質(zhì)-濁度的測定原始記錄
- 數(shù)字美的智慧工業(yè)白皮書-2023.09
評論
0/150
提交評論