版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆江蘇省蘇州市常熟市高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點(diǎn)為,過點(diǎn)的直線交拋物線于,兩點(diǎn),則的取值范圍是()A. B.C. D.2.的展開式中的系數(shù)為,則()A. B.C. D.3.若是等差數(shù)列的前項和,,則()A.13 B.39C.45 D.214.焦點(diǎn)坐標(biāo)為,(0,4),且長半軸的橢圓方程為()A. B.C. D.5.如圖,過拋物線的焦點(diǎn)的直線交拋物線于點(diǎn)、,交其準(zhǔn)線于點(diǎn),若,且,則的值為()A. B.C. D.6.在正四面體中,點(diǎn)為所在平面上動點(diǎn),若與所成角為定值,則動點(diǎn)的軌跡是()A.圓 B.橢圓C.雙曲線 D.拋物線7.已知點(diǎn)是點(diǎn)在坐標(biāo)平面內(nèi)的射影,則點(diǎn)的坐標(biāo)為()A. B.C. D.8.若點(diǎn)在橢圓上,則該橢圓的離心率為()A. B.C. D.9.已知且,則的值為()A.3 B.4C.5 D.610.如圖已知正方體,點(diǎn)是對角線上的一點(diǎn)且,,則()A.當(dāng)時,平面 B.當(dāng)時,平面C.當(dāng)為直角三角形時, D.當(dāng)?shù)拿娣e最小時,11.是等差數(shù)列,,,的第()項A.98 B.99C.100 D.10112.若直線被圓截得的弦長為4,則的最大值是()A. B.C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.曲線的一條切線的斜率為,該切線的方程為________.14.若復(fù)數(shù)滿足,則_____15.設(shè)橢圓,點(diǎn)在橢圓上,求該橢圓在P處的切線方程______.16.?dāng)?shù)列滿足前項和,則數(shù)列的通項公式為_____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,側(cè)面PBC是邊長為2的等邊三角形,M,N分別為AB,AP的中點(diǎn).過MN的平面與側(cè)面PBC交于EF(1)求證:;(2)若平面平面ABC,,求直線PB與平面PAC所成角的正弦值18.(12分)已知數(shù)列的前項和為,滿足_______請在①;②,;③三個條件中任選一個,補(bǔ)充在上面的橫線上,完成上述問題.注:若選擇不同的條件分別解答,則按第一個解答計分(1)求數(shù)列的通項公式;(2)數(shù)列滿足,求數(shù)列的前項和19.(12分)已知拋物線C:經(jīng)過點(diǎn)(1,-1).(1)求拋物線C的方程及其焦點(diǎn)坐標(biāo);(2)過拋物線C上一動點(diǎn)P作圓M:的一條切線,切點(diǎn)為A,求切線長|PA|的最小值.20.(12分)設(shè)關(guān)于x的不等式的解集為A,關(guān)于x的不等式的解集為B(1)求集合A,B;(2)若是的必要不充分條件,求實數(shù)m的取值范圍21.(12分)已知二次曲線的方程:(1)分別求出方程表示橢圓和雙曲線的條件;(2)若雙曲線與直線有公共點(diǎn)且實軸最長,求雙曲線方程;(3)為正整數(shù),且,是否存在兩條曲線,其交點(diǎn)P與點(diǎn)滿足,若存在,求的值;若不存在,說明理由22.(10分)已知橢圓的離心率,左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,過的直線交橢圓于、兩點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求的面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】當(dāng)直線斜率存在時,設(shè)直線方程,聯(lián)立方程組,結(jié)合根與系數(shù)關(guān)系可得,進(jìn)而求得取值范圍,當(dāng)斜率不存在是,可得,兩點(diǎn)坐標(biāo),進(jìn)而可得的值.【詳解】當(dāng)直線斜率存在時,設(shè)直線方程為,,,聯(lián)立方程,得,恒成立,則,,,,,所以,當(dāng)直線斜率不存在時,直線方程為,所以,,,綜上所述:,故選:B.2、B【解析】根據(jù)二項式展開式的通項,先求得x的指數(shù)為1時r的值,再求得a的值.【詳解】由題意得:二項式展開式的通項為:,令,則,故選:B3、B【解析】先根據(jù)等差數(shù)列的通項公式求出,然后根據(jù)等差數(shù)列的求和公式及等差數(shù)列的下標(biāo)性質(zhì)求得答案.【詳解】設(shè)等差數(shù)列的公差為d,則,則.故選:B.4、B【解析】根據(jù)題意可知,即可由求出,再根據(jù)焦點(diǎn)位置得出橢圓方程【詳解】因為,所以,而焦點(diǎn)在軸上,所以橢圓方程為故選:B5、B【解析】分別過點(diǎn)、作準(zhǔn)線的垂線,垂足分別為點(diǎn)、,設(shè),根據(jù)拋物線的定義以及直角三角形的性質(zhì)可求得,結(jié)合已知條件求得,分析出為的中點(diǎn),進(jìn)而可得出,即可得解.【詳解】如圖,分別過點(diǎn)、作準(zhǔn)線的垂線,垂足分別為點(diǎn)、,設(shè),則由己知得,由拋物線的定義得,故,在直角三角形中,,,因為,則,從而得,所以,,則為的中點(diǎn),從而.故選:B.6、B【解析】把條件轉(zhuǎn)化為與圓錐的軸重合,面與圓錐的相交軌跡即為點(diǎn)的軌跡后即可求解.【詳解】以平面截圓錐面,平面位置不同,生成的相交軌跡可以為拋物線、雙曲線、橢圓、圓.令與圓錐的軸線重合,如圖所示,則圓錐母線與所成角為定值,所以面與圓錐的相交軌跡即為點(diǎn)的軌跡.根據(jù)題意,不可能垂直于平面即軌跡不可能為圓.面不可能與圓錐軸線平行,即軌跡不可能是雙曲線.可進(jìn)一步計算與平面所成角為,即時,軌跡為拋物線,時,軌跡為橢圓,,所以軌跡為橢圓.故選:B.【點(diǎn)睛】本題考查了平面截圓錐面所得軌跡問題,考查了轉(zhuǎn)化化歸思想,屬于難題.7、D【解析】根據(jù)空間中射影的定義即可得到答案.【詳解】因為點(diǎn)是點(diǎn)在坐標(biāo)平面內(nèi)的射影,所以的豎坐標(biāo)為0,橫、縱坐標(biāo)與A點(diǎn)的橫、縱坐標(biāo)相同,所以點(diǎn)的坐標(biāo)為.故選:D8、C【解析】根據(jù)給定條件求出即可計算橢圓的離心率.【詳解】因點(diǎn)在橢圓,則,解得,而橢圓長半軸長,所以橢圓離心率.故選:C9、C【解析】由空間向量數(shù)量積的坐標(biāo)運(yùn)算求解【詳解】由已知,解得故選:C10、D【解析】建立空間直角坐標(biāo)系,利用空間向量法一一計算可得;【詳解】解:由題可知,如圖令正方體的棱長為1,建立空間直角坐標(biāo)系,則,,,,,,,所以,因為,所以,所以,,,,設(shè)平面的法向量為,則,令,則,,所以對于A:若平面,則,則,解得,故A錯誤;對于B:若平面,則,即,解得,故B錯誤;當(dāng)為直角三角形時,有,即,解得或(舍去),故C錯誤;設(shè)到的距離為,則,當(dāng)?shù)拿娣e最小時,,故正確故選:11、C【解析】等差數(shù)列,,中,,,由此求出,令,得到是這個數(shù)列的第100項【詳解】解:等差數(shù)列,,中,,令,得是這個數(shù)列的第100項故選:C12、A【解析】根據(jù)弦長求得的關(guān)系式,結(jié)合基本不等式求得的最大值.【詳解】圓的圓心為,半徑為,所以直線過圓心,即,由于為正數(shù),所以,當(dāng)且僅當(dāng)時,等號成立.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】使用導(dǎo)數(shù)運(yùn)算公式求得切點(diǎn)處的導(dǎo)數(shù)值,并根據(jù)導(dǎo)數(shù)的幾何意義等于切線斜率求得切點(diǎn)的橫坐標(biāo),進(jìn)而得到切點(diǎn)坐標(biāo),然后利用點(diǎn)斜式求出切線方程即可.【詳解】的導(dǎo)數(shù)為,設(shè)切點(diǎn)為,可得,解得,即有切點(diǎn),則切線的方程為,即.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的加法運(yùn)算,導(dǎo)數(shù)的幾何意義,和求切線方程,難度不大,關(guān)鍵是正確的使用導(dǎo)數(shù)運(yùn)算公式求得切點(diǎn)處的導(dǎo)數(shù)值,14、【解析】設(shè),則,利用復(fù)數(shù)相等,求出,的值,結(jié)合復(fù)數(shù)的模長公式進(jìn)行計算即可【詳解】設(shè),則,則由得,即,則,得,則,故答案為【點(diǎn)睛】本題主要考查復(fù)數(shù)模長的計算,利用待定系數(shù)法,結(jié)合復(fù)數(shù)相等求出復(fù)數(shù)是解決本題的關(guān)鍵15、【解析】由題意可知切線的斜率存在,所以設(shè)切線方程為,代入橢圓方程中整理化簡,令判別式等于零,可求出的值,從而可求得切線方程【詳解】由題意可知切線的斜率存在,所以設(shè)切線方程為,將代入中得,,化簡整理得,令,化簡整理得,即,解得,所以切線方程為,即,故答案為:16、【解析】由已知中前項和,結(jié)合,分別討論時與時的通項公式,并由時,的值不滿足時的通項公式,故要將數(shù)列的通項公式寫成分段函數(shù)的形式【詳解】∵數(shù)列前項和,∴當(dāng)時,,又∵當(dāng)時,,故,故答案為.【點(diǎn)睛】本題考查的知識點(diǎn)是等差數(shù)列的通項公式,其中正確理解由數(shù)列的前n項和Sn,求通項公式的方法和步驟是解答本題的關(guān)鍵三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由題意先證明平面PBC,然后由線面平行的性質(zhì)定理可證明.(2)由平面平面ABC,取BC中點(diǎn)O,則平面ABC,可得,由條件可得,以O(shè)坐標(biāo)原點(diǎn),分別以O(shè)B,AO,OP為x,y,z軸建立空間直角坐標(biāo)系,利用向量法求解即可.【小問1詳解】因為M,N分別為AB,AP的中點(diǎn),所以,又平面PBC,所以平面PBC,因為平面平面,所以【小問2詳解】因為平面平面ABC,取BC中點(diǎn)O,連接PO,AO,因為是等邊三角形,所以,所以平面ABC,故,又因,所以,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)B,AO,OP為x,y,z軸建立空間直角坐標(biāo)系,可得:,,,,,所以,,,設(shè)平面PAC的法向量為,則,則,令,得,,所以,所以直線PB與平面PAC所成角的正弦值為18、(1)條件選擇見解析,;(2).【解析】(1)選①,可得出,由可求得數(shù)列的通項公式;選②,分析可知數(shù)列是公差為的等差數(shù)列,根據(jù)已知條件求出的值,利用等差數(shù)列的求和公式可求得數(shù)列的通項公式;選③,在等式中令可求得的值,即可得出數(shù)列的通項公式;(2)求得,利用裂項相消法可求得.【小問1詳解】解:選①,因為,則,則,當(dāng)時,,也滿足,所以,對任意的,;選②,因為,則數(shù)列是公差為的等差數(shù)列,所以,,解得,則;選③,對任意的,,則,可得,因此,.【小問2詳解】解:因為,因此,.19、(1),焦點(diǎn)坐標(biāo)為;(2)【解析】(1)將點(diǎn)代入拋物線方程求解出的值,則拋物線方程和焦點(diǎn)坐標(biāo)可知;(2)設(shè)出點(diǎn)坐標(biāo),根據(jù)切線垂直于半徑,根據(jù)點(diǎn)到點(diǎn)距離公式表示出,然后結(jié)合二次函數(shù)的性質(zhì)求解出的最小值.【小問1詳解】解:因為拋物線過點(diǎn),所以,解得,所以拋物線的方程為:,焦點(diǎn)坐標(biāo)為;【小問2詳解】解:設(shè),因為為圓的切線,所以,,所以,所以當(dāng)時,四邊形有最小值且最小值為.20、(1),(2)【解析】(1)直接解不等式即可,(2)由題意可得,從而可得解不等式組可求得答案【小問1詳解】由,得,故由,得,故【小問2詳解】依題意得:,∴解得∴m的取值范圍為21、(1)時,方程表示橢圓,時,方程表示雙曲線;(2);(3)存在,且或或.【解析】(1)當(dāng)且僅當(dāng)分母都為正,且不相等時,方程表示橢圓;當(dāng)且僅當(dāng)分母異號時,方程表示雙曲線(2)將直線與曲線聯(lián)立化簡得:,利用雙曲線與直線有公共點(diǎn),可確定的范圍,從而可求雙曲線的實軸,進(jìn)而可得雙曲線方程;(3)由(1)知,,是橢圓,,,,是雙曲線,結(jié)合圖象的幾何性質(zhì),任意兩橢圓之間無公共點(diǎn),任意兩雙曲線之間無公共點(diǎn),從而可求【詳解】(1)當(dāng)且僅當(dāng)時,方程表示橢圓;當(dāng)且僅當(dāng)時,方程表示雙曲線(2)化簡得:△或所以雙曲線的實軸為,當(dāng)時,雙曲線實軸最長為此時雙曲線方程為(3)由(1)知,,是橢圓,,,,是雙曲線,結(jié)合圖象的幾何性質(zhì)任意兩橢圓之間無公共點(diǎn),任意兩雙曲線之間無公共點(diǎn)設(shè),,,2,,,6,7,由橢圓與雙曲線定義及;所以所以這樣的,存在,且或或【點(diǎn)睛】方法點(diǎn)睛:曲線方程的確定可分為兩類:若已知曲線類型,則采用待定系數(shù)法;若曲線類型未知時,則可利用直接法、定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州財經(jīng)職業(yè)學(xué)院《社會保障》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽幼兒師范高等??茖W(xué)?!吨袑W(xué)政治教學(xué)法與技能訓(xùn)練》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年江蘇省安全員C證考試題庫
- 2025福建建筑安全員-C證考試題庫
- 貴陽康養(yǎng)職業(yè)大學(xué)《酒店規(guī)劃與設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州中醫(yī)藥大學(xué)《高分子化學(xué)與物理》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年安徽省建筑安全員-C證(專職安全員)考試題庫
- 2025遼寧省建筑安全員C證考試(專職安全員)題庫附答案
- 廣州醫(yī)科大學(xué)《混凝土結(jié)構(gòu)基本原理(建筑工程)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年廣東建筑安全員《B證》考試題庫
- 礦井軌道質(zhì)量標(biāo)準(zhǔn)及架線維護(hù)規(guī)程
- 人教版高中化學(xué)選修二測試題及答案解析
- 打字測試評分標(biāo)準(zhǔn)
- 2023年報告文學(xué)研究(自考)(重點(diǎn))題庫(帶答案)
- GB/T 18691.5-2021農(nóng)業(yè)灌溉設(shè)備灌溉閥第5部分:控制閥
- 《左傳》簡介課件
- 2023學(xué)年完整版高中英語2UNIT2Let'scelebrate!TherealfatherCh
- 湖北省武漢市江漢區(qū)2021-2022七年級初一上學(xué)期期末數(shù)學(xué)試卷+答案
- 手機(jī)領(lǐng)用申請單
- 云南風(fēng)光課件
- 城鎮(zhèn)天然氣工程施工組織設(shè)計方案
評論
0/150
提交評論