![重慶外國語學(xué)校2025屆數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第1頁](http://file4.renrendoc.com/view8/M02/10/1E/wKhkGWcG0a2AUW4SAAHFRmhkvFI482.jpg)
![重慶外國語學(xué)校2025屆數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第2頁](http://file4.renrendoc.com/view8/M02/10/1E/wKhkGWcG0a2AUW4SAAHFRmhkvFI4822.jpg)
![重慶外國語學(xué)校2025屆數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第3頁](http://file4.renrendoc.com/view8/M02/10/1E/wKhkGWcG0a2AUW4SAAHFRmhkvFI4823.jpg)
![重慶外國語學(xué)校2025屆數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第4頁](http://file4.renrendoc.com/view8/M02/10/1E/wKhkGWcG0a2AUW4SAAHFRmhkvFI4824.jpg)
![重慶外國語學(xué)校2025屆數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第5頁](http://file4.renrendoc.com/view8/M02/10/1E/wKhkGWcG0a2AUW4SAAHFRmhkvFI4825.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
重慶外國語學(xué)校2025屆數(shù)學(xué)高二上期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線C:的焦點為F,過點P(-1,0)且斜率為的直線l與拋物線C相交于A,B兩點,則()A. B.14C. D.152.若方程表示焦點在y軸上的雙曲線,則實數(shù)m的取值范圍為()A. B.C. D.且3.已知點,點關(guān)于原點的對稱點為,則()A. B.C. D.4.已知:,:,若是的充分不必要條件,則實數(shù)的取值范圍是()A. B.C. D.5.在平行六面體中,點P在上,若,則()A. B.C. D.6.已知為兩條不同的直線,為兩個不同的平面,則下列結(jié)論正確的是()A.若,則B.若,則C.若,則D.若,則7.已知函數(shù),則()A.0 B.1C.2 D.8.已知集合A={1,a,b},B={a2,a,ab},若A=B,則a2021+b2020=()A.-1 B.0C.1 D.29.已知數(shù)列滿足,則滿足的的最大取值為()A.6 B.7C.8 D.910.下列雙曲線中,漸近線方程為的是A. B.C. D.11.經(jīng)過直線與直線的交點,且平行于直線的直線方程為()A. B.C. D.12.古希臘數(shù)學(xué)家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,著作中有這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.已知O(0,0),A(3,0),動點P(x,y)滿,則動點P軌跡與圓的位置關(guān)系是()A.相交 B.相離C.內(nèi)切 D.外切二、填空題:本題共4小題,每小題5分,共20分。13.將4名志愿者分配到3個不同的北京冬奧場館參加接待工作,每個場館至少分配一名志愿者的方案種數(shù)為________.(用數(shù)字作答)14.不等式的解集是________.15.已知對任意正實數(shù)m,n,p,q,有如下結(jié)論成立:若,則有成立,現(xiàn)已知橢圓上存在一點P,,為其焦點,在中,,,則橢圓的離心率為______16.已知等差數(shù)列的公差不為零,若,,成等比數(shù)列,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知平行六面體中,底面ABCD是邊長為1的正方形,,,設(shè),,(1)用,,表示,并求;(2)求18.(12分)在平面直角坐標(biāo)系中,已知點,軸于點,是線段上的動點,軸于點,于點,與相交于點.(1)判斷點是否在拋物線上,并說明理由;(2)過點作拋物線的切線交軸于點,過拋物線上的點作拋物線的切線交軸于點,……,以此類推,得到數(shù)列,求,及數(shù)列的通項公式.19.(12分)《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機動車行經(jīng)人行橫道時,應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,其中第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):參考公式:,月份12345違章駕駛員人數(shù)1201051009580(1)請利用所給數(shù)據(jù)求違章人數(shù)y與月份x之間的回歸直線方程;(2)預(yù)測該路口10月份的不“禮讓斑馬線”違章駕駛員人數(shù);20.(12分)如圖,在四棱錐中,平面平面,底面是菱形,E為的中點(1)證明:(2)已知,求二面角的余弦值21.(12分)已知是公比不為1的等比數(shù)列,,且為的等差中項.(1)求的公比;(2)求的通項公式及前n項和.22.(10分)設(shè)命題p:實數(shù)x滿足,其中;命題q:若,且為真,求實數(shù)x的取值范圍;若是的充分不必要條件,求實數(shù)m的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè)A、B兩點的坐標(biāo)分別為,,根據(jù)拋物線的定義求出,然后將直線的方程代入拋物線方程并化簡,進而結(jié)合根與系數(shù)的關(guān)系求得答案.【詳解】設(shè)A、B兩點坐標(biāo)分別為,,直線的方程為,拋物線的準(zhǔn)線方程為:,由拋物線定義可知:.聯(lián)立方程,消去y后整理為,可得,,.故選:C.2、A【解析】根據(jù)雙曲線定義,且焦點在y軸上,則可直接列出相關(guān)不等式.【詳解】若方程表示焦點在y軸上的雙曲線,則必有:,且解得:故選:3、C【解析】根據(jù)空間兩點間距離公式,結(jié)合對稱性進行求解即可.【詳解】因為點關(guān)于原點的對稱點為,所以,因此,故選:C4、C【解析】由是的充分不必要條件,則是的充分不必要條件,再根據(jù)對應(yīng)集合的包含關(guān)系可得答案.【詳解】由,即,設(shè),由是的充分不必要條件,則是的充分不必要條件所以,則故選:C5、C【解析】利用空間向量基本定理,結(jié)合空間向量加法的法則進行求解即可.【詳解】因為,,所以有,因此,故選:C6、D【解析】根據(jù)空間里面直線與平面、平面與平面位置關(guān)系的相關(guān)定理逐項判斷即可.【詳解】A,若,則或異面,故該選項錯誤;B,若,則或相交,故該選項錯誤;C,若,則α,β不一定垂直,故該選項錯誤;D,若,則利用面面垂直的性質(zhì)可得,故該選項正確.故選:D.7、C【解析】對函數(shù)f(x)求導(dǎo)即可求得結(jié)果.【詳解】函數(shù),則,,故選C【點睛】本題考查正弦函數(shù)的導(dǎo)數(shù)的應(yīng)用,屬于簡單題.8、A【解析】根據(jù)A=B,可得兩集合元素全部相等,分別求得和ab=1兩種情況下,a,b的取值,分析討論,即可得答案.【詳解】因為A=B,若,解得,當(dāng)時,不滿足互異性,舍去,當(dāng)時,A={1,-1,b},B={1,-1,-b},因為A=B,所以,解得,所以;若ab=1,則,所以,若,解得或1,都不滿足題意,舍去,若,解得,不滿足互異性,舍去,故選:A【點睛】本題考查兩集合相等的概念,在集合相等問題中由一個條件求出參數(shù)后需進行代入檢驗,檢驗是否滿足互異性、題設(shè)條件等,屬基礎(chǔ)題.9、B【解析】首先地推公式變形,得,,求得數(shù)列的通項公式后,再解不等式.【詳解】因為,兩邊取倒數(shù),得,整理為:,,所以數(shù)列是首項為1,公差為4的等差數(shù)列,,,因為,即,得,解得:,,所以的最大值是7.故選:B10、A【解析】由雙曲線的漸進線的公式可行選項A的漸進線方程為,故選A.考點:本題主要考查雙曲線的漸近線公式.11、B【解析】求出兩直線的交點坐標(biāo),可設(shè)所求直線的方程為,將交點坐標(biāo)代入求得,即可的解.【詳解】解:由,解得,即兩直線的交點坐標(biāo)為,設(shè)所求直線的方程為,則有,解得,所以所求直線方程為,即.故選:B.12、A【解析】首先求得點的軌跡,再利用圓心距與半徑的關(guān)系,即可判斷兩圓的位置關(guān)系.【詳解】由條件可知,,化簡為:,動點的軌跡是以為圓心,2為半徑的圓,圓是以為圓心,為半徑的圓,兩圓圓心間的距離,所以兩圓相交.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、36【解析】先將4人分成2、1、1三組,再安排給3個不同的場館,由分步乘法計數(shù)原理可得.【詳解】將4人分到3個不同的體育場館,要求每個場館至少分配1人,則必須且只能有1個場館分得2人,其余的2個場館各1人,可先將4人分為2、1、1的三組,有種分組方法,再將分好的3組對應(yīng)3個場館,有種方法,則共有種分配方案.故答案為:3614、【解析】把原不等式的右邊移項到左邊,通分計算后,根據(jù)分式不等式解法,然后轉(zhuǎn)化為兩個一元一次不等式組,注意分母不為0的要求,求出不等式組的解集即為原不等式的解集【詳解】不等式得,故,故答案為:.15、【解析】根據(jù)正弦定理,結(jié)合題意,列出方程,代入數(shù)據(jù),化簡即可得答案.詳解】由題意得:,所以,所以,解得.故答案為:16、0【解析】設(shè)等差數(shù)列的公差為,,根據(jù),,成等比數(shù)列,得到,再根據(jù)等差數(shù)列的通項公式可得結(jié)果.【詳解】設(shè)等差數(shù)列的公差為,,因為,,成等比數(shù)列,所以,所以,整理得,因為,所以,所以.故答案為:0.【點睛】本題考查了等比中項,考查了等差數(shù)列通項公式基本量運算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)0【解析】(1)把,,作為基底,利用空間向量基本定理表示,然后根據(jù)已知的數(shù)據(jù)求,(2)先把用基底表示,然后化簡求解【小問1詳解】因為,,,,所以,因為底面ABCD是邊長為1的正方形,,,所以【小問2詳解】因為,底面ABCD是邊長為1的正方形,,,所以18、(1)在拋物線上,理由見解析(2),,.【解析】(1)根據(jù)直線的方程設(shè)出點的坐標(biāo),利用已知條件求出點的坐標(biāo)即可判斷點是否在拋物線上;(2)設(shè)出直線的直線方程,與拋物線聯(lián)立,令,即可求出,同理可以求出,設(shè)出直線的直線方程,與拋物線聯(lián)立,令即可求出的方程,若令,,即,故數(shù)列是首項,公比為的等比數(shù)列,即可求出數(shù)列的通項公式.【小問1詳解】由已知條件得直線的方程為,設(shè)點,則,由直線的方程為可得點的坐標(biāo)為,點滿足拋物線,則點是否在拋物線上;【小問2詳解】設(shè)的直線方程為,將直線與拋物線聯(lián)立得,,解得,的直線方程為,則,即,由此可知,設(shè)的直線方程為,將直線與拋物線聯(lián)立得,,解得,的直線方程為,則,即,由此可知設(shè)點,設(shè)直線方程為,將直線與拋物線聯(lián)立得,,其中,即,,解得,直線的方程為,即,令得,即直線過點,則直線的斜率為,直線的方程也可以表示為,即,令,,即,則,即數(shù)列是首項,公比為的等比數(shù)列,故.19、(1);(2)37【解析】(1)將題干數(shù)據(jù)代入公式求出與,進而求出回歸直線方程;(2)再第一問的基礎(chǔ)上代入求出結(jié)果.【小問1詳解】,,則,,所以回歸直線方程;【小問2詳解】令得:,故該路口10月份的不“禮讓斑馬線”違章駕駛員人數(shù)為37.20、(1)詳見解析(2)【解析】(1)利用垂直關(guān)系,轉(zhuǎn)化為證明線面垂直,即可證明線線垂直;(2)利用垂直關(guān)系,建立空間直角坐標(biāo)系,分別求平面和平面的法向量,利用公式,即可求解二面角的余弦值.【小問1詳解】如圖,取的中點,連結(jié),,,因為,所以,因為平面平面,平面平面,所以平面,且平面,所以,又因為底面時菱形,所以,又因為點分別為的中點,所以,所以,且,所以平面,又因為平面,所以;【小問2詳解】由(1)可知,平面,連結(jié),因為,,點為的中點,所以,則兩兩垂直,以點為坐標(biāo)原點,建立空間直角坐標(biāo)系,如圖所示:則,,,所以,,,,,,所以,,,設(shè)平面的法向量為,則,令,則,,故,設(shè)平面的法向量為,所以,因為二面角為銳二面角,所以二面角的余弦值為.21、(1)(2),【解析】(1)設(shè)數(shù)列公比為,根據(jù)列出方程,即可求解;(2):由(1)得到,利用等比數(shù)列的求和公式,即可求解.【小問1詳解】解:設(shè)數(shù)列公比為,因為為的等差中項,可得,即,即,解得或(舍去),所以等比數(shù)列的公比為.【小問2詳解】解:由(1)知且,可得,所以.22、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國硅纖管行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國灶架行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國棉用增白劑行業(yè)投資前景及策略咨詢研究報告
- 2025年提籃包裝機項目可行性研究報告
- 2025至2031年中國吸氣材料行業(yè)投資前景及策略咨詢研究報告
- 2025年卷閘門槽管項目可行性研究報告
- 2025至2031年中國三合一塑瓶液體包裝系統(tǒng)行業(yè)投資前景及策略咨詢研究報告
- 2025年三維可視地理信息系統(tǒng)項目可行性研究報告
- 2025至2030年高強彩色水泥瓦項目投資價值分析報告
- 2025至2030年中國鋁壓鑄化油器數(shù)據(jù)監(jiān)測研究報告
- 當(dāng)前警察職務(wù)犯罪的特征、原因及防范,司法制度論文
- 計算機文化基礎(chǔ)單元設(shè)計-windows
- 創(chuàng)建動物保護家園-完整精講版課件
- 廣東省保安服務(wù)監(jiān)管信息系統(tǒng)用戶手冊(操作手冊)
- DNA 親子鑒定手冊 模板
- DB33T 1233-2021 基坑工程地下連續(xù)墻技術(shù)規(guī)程
- 天津 建設(shè)工程委托監(jiān)理合同(示范文本)
- 廣東中小學(xué)教師職稱評審申報表初稿樣表
- 部編一年級語文下冊教材分析
- 火炬及火炬氣回收系統(tǒng)操作手冊
- 北師大七年級數(shù)學(xué)下冊教學(xué)工作計劃及教學(xué)進表
評論
0/150
提交評論