山西省呂梁地區(qū)2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
山西省呂梁地區(qū)2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
山西省呂梁地區(qū)2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
山西省呂梁地區(qū)2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
山西省呂梁地區(qū)2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山西省呂梁地區(qū)2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為拋物線上一點,點P到拋物線C的焦點的距離與它到y(tǒng)軸的距離之比為,則()A.1 B.C.2 D.32.已知雙曲線的左右焦點分別為、,過點的直線交雙曲線右支于A、B兩點,若是等腰三角形,且,則的周長為()A. B.C. D.3.函數(shù)在點處的切線方程的斜率是()A. B.C. D.4.“直線的斜率不大于0”是“直線的傾斜角為鈍角”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知,若,則()A. B.2C. D.e6.過點的直線在兩坐標軸上的截距之和為零,則該直線方程為()A. B.C.或 D.或7.有6個相同的球,分別標有數(shù)字1,2,3,4,5,6,從中有放回的隨機取兩次,每次取1個球.甲表示事件“第一次取出的球的數(shù)字是1”,乙表示事件“第二次取出的球的數(shù)字是6”,丙表示事件“兩次取出的球的數(shù)字之和是5”,丁表示事件“兩次取出的球的數(shù)字之和是偶數(shù)”,則下列判斷正確的是()A.甲與丙是互斥事件 B.乙與丙是對立事件C.甲與丁是對立事件 D.丙與丁是互斥事件8.過點且平行于直線的直線方程為()A. B.C. D.9.若雙曲線的兩個焦點為,點是上的一點,且,則雙曲線的漸近線與軸的夾角的取值范圍是()A. B.C. D.10.已知數(shù)列滿足,且,則()A.2 B.3C.5 D.811.中國農(nóng)歷的二十四節(jié)氣是中華民族的智慧與傳統(tǒng)文化的結(jié)晶,二十四節(jié)氣歌是以春、夏、秋、冬開始的四句詩.在國際氣象界,二十四節(jié)氣被譽為“中國的第五大發(fā)明”.2016年11月30日,二十四節(jié)氣被正式列入聯(lián)合國教科文組織人類非物質(zhì)文化遺產(chǎn)代表作名錄.某小學(xué)三年級共有學(xué)生600名,隨機抽查100名學(xué)生并提問二十四節(jié)氣歌,只能說出一句的有45人,能說出兩句及以上的有38人,據(jù)此估計該校三年級的600名學(xué)生中,對二十四節(jié)氣歌一句也說不出的有()A.17人 B.83人C.102人 D.115人12.已知為橢圓的兩個焦點,過的直線交橢圓于兩點,若,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐的四個頂點在球的球面上,,是邊長為正三角形,分別是的中點,,則球的體積為_________________14.在等比數(shù)列中,已知,則__________15.設(shè)數(shù)列滿足且,則________.數(shù)列的通項=________.16.設(shè),則動點P的軌跡方程為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)各項都為正數(shù)的數(shù)列的前項和為,且滿足.(1)求數(shù)列的通項公式;(2)求;(3)設(shè),數(shù)列的前項和為,求使成立的的最小值.18.(12分)已知函數(shù)在處取得極值(1)若對任意正實數(shù),恒成立,求實數(shù)的取值范圍;(2)討論函數(shù)的零點個數(shù)19.(12分)設(shè)橢圓:()的離心率為,橢圓上一點到左右兩個焦點、的距離之和是4.(1)求橢圓的方程;(2)已知過的直線與橢圓交于、兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值.20.(12分)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,滿足(2a﹣b)sinA+(2b﹣a)sinB=2csinC.(1)求角C的大??;(2)若cosA=,求的值.21.(12分)有兩位射擊運動員在一次射擊測試中各射靶7次,每次命中的環(huán)數(shù)如下:甲6978856乙a398964經(jīng)計算可得甲、乙兩名射擊運動員的平均成績是一樣的(1)求實數(shù)a的值;(2)請通過計算,判斷甲、乙兩名射擊運動員哪一位的成績更穩(wěn)定?22.(10分)已知數(shù)列滿足,.(1)求證數(shù)列是等差數(shù)列,并求通項公式;(2)已知數(shù)列的前項和為,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先求出點的坐標,然后根據(jù)拋物線的定義和已知條件列方程求解即可【詳解】因為為拋物線上一點,所以,得,所以,拋物線的焦點為,因為點P到拋物線C的焦點的距離與它到y(tǒng)軸的距離之比為,所以,化簡得,因為,所以,故選:B2、A【解析】設(shè),.根據(jù)雙曲線的定義和等腰三角形可得,再利用余弦定理可求得,從而可得的周長.【詳解】由雙曲線可得設(shè),.則,,所以,因為是等腰三角形,且,所以,即,所以,所以,,在中,由余弦定理得,即,所以,解得,的周長故選:A【點睛】關(guān)鍵點點睛:根據(jù)雙曲線的定義求解是解題關(guān)鍵.3、D【解析】求解導(dǎo)函數(shù),再由導(dǎo)數(shù)的幾何意義得切線的斜率.【詳解】求導(dǎo)得,由導(dǎo)數(shù)的幾何意義得,所以函數(shù)在處切線的斜率為.故選:D4、B【解析】直線傾斜角的范圍是[0°,180°),直線斜率為傾斜角(不為90°)的正切值,據(jù)此即可判斷求解.【詳解】直線的斜率不大于0,則直線l斜率可能等于零,此時直線傾斜角為0°,不為鈍角,故“直線的斜率不大于0”不是“直線的傾斜角為鈍角”充分條件;直線的傾斜角為鈍角時,直線的斜率為負,滿足直線的斜率不大于0,即“直線的傾斜角為鈍角”是“直線的斜率不大于0”的充分條件,“直線的斜率不大于0”是“直線的傾斜角為鈍角”的必要條件;綜上,“直線的斜率不大于0”是“直線的傾斜角為鈍角”的必要不充分條件.故選:B.5、B【解析】求得導(dǎo)函數(shù),則,計算即可得出結(jié)果.【詳解】,.,解得:.故選:B6、D【解析】分截距為零和不為零兩種情況討論即可﹒【詳解】當直線過原點時,滿足題意,方程為,即2x-y=0;當直線不過原點時,設(shè)方程為,∵直線過(1,2),∴,∴,∴方程為,故選:D﹒7、D【解析】根據(jù)互斥事件和對立事件的定義判斷【詳解】當?shù)谝淮稳〕?,第二次取出4時,甲丙同時發(fā)生,不互斥不對立;第二次取出的球的數(shù)字是6與兩次取出的球的數(shù)字之和是5不可能同時發(fā)生,但可以同時不發(fā)生,不對立,當?shù)谝淮稳〕?,第二次取出3時,甲與丁同時發(fā)生,不互斥不對立,兩次取出的球的數(shù)字之和是5與兩次取出的球的數(shù)字之和是偶數(shù)不可以同時發(fā)生,但可以同時不發(fā)生,因此是互斥不對立故選:D8、A【解析】設(shè)直線的方程為,代入點的坐標即得解.【詳解】解:設(shè)直線的方程為,把點坐標代入直線方程得.所以所求的直線方程為.故選:A9、B【解析】由條件結(jié)合雙曲線的定義可得,然后可得,然后可求出的范圍即可.【詳解】由雙曲線的定義可得,結(jié)合可得當點不為雙曲線的頂點時,可得,即當點為雙曲線的頂點時,可得,即所以,所以,所以所以雙曲線的漸近線與軸的夾角的取值范圍是故選:B10、D【解析】使用遞推公式逐個求解,直到求出即可.【詳解】因為所以,,,.故選:D11、C【解析】根據(jù)頻率計算出正確答案.【詳解】一句也說不出的學(xué)生頻率為,所以估計名學(xué)生中,一句也說不出的有人.故選:C12、C【解析】根據(jù)橢圓的定義可得,由即可求解.【詳解】由,可得根據(jù)橢圓的定義,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知設(shè)出,,,分別在中和在中運用余弦定理表示,得到關(guān)于x與y的關(guān)系式,再在中運用勾股定理得到關(guān)于x與y的又一關(guān)系式,聯(lián)立可解得x,y,從而分析出正三棱錐是,,兩兩垂直的正三棱錐,所以三棱錐的外接球就是以為棱的正方體的外接球,再通過正方體的外接球的直徑等于正方體的體對角線的長求出球的半徑,再求出球的體積.【詳解】在中,設(shè),,,,,因為點,點分別是,的中點,所以,,在中,,在中,,整理得,因為是邊長為的正三角形,所以,又因為,所以,由,解得,所以又因為是邊長為的正三角形,所以,所以,所以,,兩兩垂直,則球為以為棱的正方體的外接球,則外接球直徑為,所以球的體積為,故答案為.【點睛】本題主要考查空間幾何體的外接球的體積,破解關(guān)鍵在于熟悉正三棱錐的結(jié)構(gòu)特征,運用解三角形的正弦定理和余弦定理得出三棱錐的棱的關(guān)系,繼而分析出正三棱錐的外接球是以正三棱錐中互相垂直的三條棱為棱的正方體的外接球,利用正方體的外接球的直徑等于正方體的體對角線的長求解更方便快捷,屬于中檔題14、32【解析】根據(jù)已知求出公比即可求出答案.【詳解】設(shè)等比數(shù)列的公比為,則,則,所以.故答案為:32.15、①.5②.【解析】設(shè),根據(jù)題意得到數(shù)列是等差數(shù)列,求得,得到,利用,結(jié)合“累加法”,即可求得.【詳解】解:由題意,數(shù)列滿足,所以當時,,,解得,設(shè),則,且,所以數(shù)列是等差數(shù)列,公差為,首項為,所以,即,所以,當時,可得,其中也滿足,所以數(shù)列的通項公式為.故答案為:;.16、【解析】根據(jù)雙曲線的定義可得答案.【詳解】因為,所以動點P的軌跡是焦點為A,B,實軸長為4的雙曲線的上支.因為,所以,所以動點P的軌跡方程為故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】(1)直接利用數(shù)列的遞推關(guān)系式,結(jié)合等差數(shù)列的定義,即可求得數(shù)列的通項公式;(2)化簡,結(jié)合裂項相消法求出數(shù)列的和;(3)利用分組法求得,結(jié)合,即可求得的最小值.【小問1詳解】解:因為各項都為正數(shù)的數(shù)列的前項和為,且滿足,當時,解得;當時,;兩式相減可得,整理得(常數(shù)),故數(shù)列是以2為首項,2為公差的等差數(shù)列;所以.【小問2詳解】解:由,可得,所以,所以.【小問3詳解】解:由,可得,所以當為偶數(shù)時,,因為,且為偶數(shù),所以的最小值為48;當為奇數(shù)時,,不存在最小的值,故當為48時,滿足條件.18、(1)(2)答案見解析.【解析】(1)根據(jù)極值點求出,再利用導(dǎo)數(shù)求出的最大值,將不等式恒成立化為最大值成立可求出結(jié)果;(2)利用導(dǎo)數(shù)求出函數(shù)的極大、極小值,結(jié)合函數(shù)的圖象分類討論可得結(jié)果.【小問1詳解】函數(shù)的定義域為,因為,且在處取得極值,所以,即,得,此時,當時,,為增函數(shù);當時。,為減函數(shù),所以在處取得極大值,也是最大值,最大值為,因為對任意正實數(shù),恒成立,所以,得.【小問2詳解】,,由,得,由,得或,所以在上為增函數(shù),在上為減函數(shù),在上為增函數(shù),所以在時取得極大值為,在時取得極小值為,因為當大于0趨近于0時,趨近于負無窮,當趨近于正無窮時,趨近于正無窮,所以當,即時,有且只有一個零點;當,即時,有且只有兩個零點;當,即時,有且只有三個零點;當,即時,有且只有兩個零點;當,即時,有且只有一個零點.綜上所述:當或時,有且只有一個零點;當或時,有且只有兩個零點;當時有且只有三個零點.19、(1);(2)6.【解析】(1)本小題根據(jù)題意先求,,,再求橢圓的標準方程;(2)本小題先設(shè)過的直線的方程,再根據(jù)題意表示出四邊形的面積,最后求最值即可.【詳解】解:(1)∵橢圓上一點到左右兩個焦點、的距離之和是4,∴即,∵,∴,又∵,∴.∴橢圓的標準方程為;(2)設(shè)點、的坐標為,,因為直線過點,所以可設(shè)直線方程為,聯(lián)立方程,消去可得:,化簡整理得,其中,所以,,因為,所以四邊形是平行四邊形,設(shè)平面四邊形的面積為,則,設(shè),則(),所以,因為,所以,,所以四邊形面積的最大值為6.【點睛】本題考查橢圓的標準方程,相交弦等問題,是偏難題.20、(1)(2)【解析】(1)利用正弦定理、余弦定理化簡已知條件,求得,由此求得.(2)先求得,結(jié)合兩角差的正弦公式求得.【小問1詳解】,,即,,,.【小問2詳解】由,可得,.21、(1)10;(2)甲的成績比乙更穩(wěn)定.【解析】(1)根據(jù)甲乙成績求他們的平均成績,由平均成績相等列方程求參數(shù)a的值.(2)由已知數(shù)據(jù)及(1)的結(jié)果,求甲乙的方差并比較大小,即可知哪位運動員成績更穩(wěn)定.【小問1詳解】由題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論