2025屆湖南省長沙市望城區(qū)第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末檢測試題含解析_第1頁
2025屆湖南省長沙市望城區(qū)第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末檢測試題含解析_第2頁
2025屆湖南省長沙市望城區(qū)第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末檢測試題含解析_第3頁
2025屆湖南省長沙市望城區(qū)第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末檢測試題含解析_第4頁
2025屆湖南省長沙市望城區(qū)第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆湖南省長沙市望城區(qū)第二中學(xué)數(shù)學(xué)高三第一學(xué)期期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.2.若集合,,則下列結(jié)論正確的是()A. B. C. D.3.已知函數(shù)在上單調(diào)遞增,則的取值范圍()A. B. C. D.4.下圖中的圖案是我國古代建筑中的一種裝飾圖案,形若銅錢,寓意富貴吉祥.在圓內(nèi)隨機取一點,則該點取自陰影區(qū)域內(nèi)(陰影部分由四條四分之一圓弧圍成)的概率是()A. B. C. D.5.點在所在的平面內(nèi),,,,,且,則()A. B. C. D.6.若函數(shù)f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實數(shù)a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)7.已知正方體的棱長為2,點在線段上,且,平面經(jīng)過點,則正方體被平面截得的截面面積為()A. B. C. D.8.函數(shù)的單調(diào)遞增區(qū)間是()A. B. C. D.9.若樣本的平均數(shù)是10,方差為2,則對于樣本,下列結(jié)論正確的是()A.平均數(shù)為20,方差為4 B.平均數(shù)為11,方差為4C.平均數(shù)為21,方差為8 D.平均數(shù)為20,方差為810.在中,內(nèi)角的平分線交邊于點,,,,則的面積是()A. B. C. D.11.在中,,分別為,的中點,為上的任一點,實數(shù),滿足,設(shè)、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.12.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.己知函數(shù),若關(guān)于的不等式對任意的恒成立,則實數(shù)的取值范圍是______.14.若函數(shù)恒成立,則實數(shù)的取值范圍是_____.15.已知實數(shù),且由的最大值是_________16.設(shè)α、β為互不重合的平面,m,n是互不重合的直線,給出下列四個命題:①若m∥n,則m∥α;②若m?α,n?α,m∥β,n∥β,則α∥β;③若α∥β,m?α,n?β,則m∥n;④若α⊥β,α∩β=m,n?α,m⊥n,則n⊥β;其中正確命題的序號為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,是矩形,的頂點在邊上,點,分別是,上的動點(的長度滿足需求).設(shè),,,且滿足.(1)求;(2)若,,求的最大值.18.(12分)已知函數(shù)的圖象在處的切線方程是.(1)求的值;(2)若函數(shù),討論的單調(diào)性與極值;(3)證明:.19.(12分)的內(nèi)角,,的對邊分別為,,,其面積記為,滿足.(1)求;(2)若,求的值.20.(12分)已知等比數(shù)列中,,是和的等差中項.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和.21.(12分)已知數(shù)列滿足,等差數(shù)列滿足,(1)分別求出,的通項公式;(2)設(shè)數(shù)列的前n項和為,數(shù)列的前n項和為證明:.22.(10分)設(shè)函數(shù).(1)若,時,在上單調(diào)遞減,求的取值范圍;(2)若,,,求證:當時,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

三視圖對應(yīng)的幾何體為如圖所示的幾何體,利用割補法可求其體積.【詳解】根據(jù)三視圖可得原幾何體如圖所示,它是一個圓柱截去上面一塊幾何體,把該幾何體補成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【點睛】本題考查三視圖以及不規(guī)則幾何體的體積,復(fù)原幾何體時注意三視圖中的點線關(guān)系與幾何體中的點、線、面的對應(yīng)關(guān)系,另外,不規(guī)則幾何體的體積可用割補法來求其體積,本題屬于基礎(chǔ)題.2、D【解析】

由題意,分析即得解【詳解】由題意,故,故選:D【點睛】本題考查了元素和集合,集合和集合之間的關(guān)系,考查了學(xué)生概念理解,數(shù)學(xué)運算能力,屬于基礎(chǔ)題.3、B【解析】

由,可得,結(jié)合在上單調(diào)遞增,易得,即可求出的范圍.【詳解】由,可得,時,,而,又在上單調(diào)遞增,且,所以,則,即,故.故選:B.【點睛】本題考查了三角函數(shù)的單調(diào)性的應(yīng)用,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.4、C【解析】令圓的半徑為1,則,故選C.5、D【解析】

確定點為外心,代入化簡得到,,再根據(jù)計算得到答案.【詳解】由可知,點為外心,則,,又,所以①因為,②聯(lián)立方程①②可得,,,因為,所以,即.故選:【點睛】本題考查了向量模長的計算,意在考查學(xué)生的計算能力.6、C【解析】

求函數(shù)導(dǎo)數(shù),分析函數(shù)單調(diào)性得到函數(shù)的簡圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數(shù),在(-2,0)上是減函數(shù),作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結(jié)合圖象可知,解得a∈[-3,0),故選C.【點睛】本題主要考查了利用函數(shù)導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進而研究函數(shù)的最值,屬于??碱}型.7、B【解析】

先根據(jù)平面的基本性質(zhì)確定平面,然后利用面面平行的性質(zhì)定理,得到截面的形狀再求解.【詳解】如圖所示:確定一個平面,因為平面平面,所以,同理,所以四邊形是平行四邊形.即正方體被平面截的截面.因為,所以,即所以由余弦定理得:所以所以四邊形故選:B【點睛】本題主要考查平面的基本性質(zhì),面面平行的性質(zhì)定理及截面面積的求法,還考查了空間想象和運算求解的能力,屬于中檔題.8、D【解析】

利用輔助角公式,化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,并采用整體法,可得結(jié)果.【詳解】因為,由,解得,即函數(shù)的增區(qū)間為,所以當時,增區(qū)間的一個子集為.故選D.【點睛】本題考查了輔助角公式,考查正弦型函數(shù)的單調(diào)遞增區(qū)間,重點在于把握正弦函數(shù)的單調(diào)性,同時對于整體法的應(yīng)用,使問題化繁為簡,難度較易.9、D【解析】

由兩組數(shù)據(jù)間的關(guān)系,可判斷二者平均數(shù)的關(guān)系,方差的關(guān)系,進而可得到答案.【詳解】樣本的平均數(shù)是10,方差為2,所以樣本的平均數(shù)為,方差為.故選:D.【點睛】樣本的平均數(shù)是,方差為,則的平均數(shù)為,方差為.10、B【解析】

利用正弦定理求出,可得出,然后利用余弦定理求出,進而求出,然后利用三角形的面積公式可計算出的面積.【詳解】為的角平分線,則.,則,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面積為.故選:B.【點睛】本題考查三角形面積的計算,涉及正弦定理和余弦定理以及三角形面積公式的應(yīng)用,考查計算能力,屬于中等題.11、D【解析】

根據(jù)三角形中位線的性質(zhì),可得到的距離等于△的邊上高的一半,從而得到,由此結(jié)合基本不等式求最值,得到當取到最大值時,為的中點,再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結(jié)果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當且僅當時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【點睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應(yīng)用,考查了基本不等式求最值,屬于中檔題.12、C【解析】

根據(jù)題目中的基底定義求解.【詳解】因為,,,,,,所以能作為集合的基底,故選:C【點睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

首先判斷出函數(shù)為定義在上的奇函數(shù),且在定義域上單調(diào)遞增,由此不等式對任意的恒成立,可轉(zhuǎn)化為在上恒成立,進而建立不等式組,解出即可得到答案.【詳解】解:函數(shù)的定義域為,且,函數(shù)為奇函數(shù),當時,函數(shù),顯然此時函數(shù)為增函數(shù),函數(shù)為定義在上的增函數(shù),不等式即為,在上恒成立,,解得.故答案為.【點睛】本題考查函數(shù)單調(diào)性及奇偶性的綜合運用,考查不等式的恒成立問題,屬于常規(guī)題目.14、【解析】

若函數(shù)恒成立,即,求導(dǎo)得,在三種情況下,分別討論函數(shù)單調(diào)性,求出每種情況時的,解關(guān)于的不等式,再取并集,即得。【詳解】由題意得,只要即可,,當時,令解得,令,解得,單調(diào)遞減,令,解得,單調(diào)遞增,故在時,有最小值,,若恒成立,則,解得;當時,恒成立;當時,,單調(diào)遞增,,不合題意,舍去.綜上,實數(shù)的取值范圍是.故答案為:【點睛】本題考查恒成立條件下,求參數(shù)的取值范圍,是??碱}型。15、【解析】

將其轉(zhuǎn)化為幾何意義,然后根據(jù)最值的條件求出最大值【詳解】由化簡得,又實數(shù),圖形為圓,如圖:,可得,則由幾何意義得,則,為求最大值則當過點或點時取最小值,可得所以的最大值是【點睛】本題考查了二元最值問題,將其轉(zhuǎn)化為幾何意義,得到圓的方程及斜率問題,對要求的二元二次表達式進行化簡,然后求出最值問題,本題有一定難度。16、④【解析】

根據(jù)直線和平面,平面和平面的位置關(guān)系依次判斷每個選項得到答案.【詳解】對于①,當m∥n時,由直線與平面平行的定義和判定定理,不能得出m∥α,①錯誤;對于②,當m?α,n?α,且m∥β,n∥β時,由兩平面平行的判定定理,不能得出α∥β,②錯誤;對于③,當α∥β,且m?α,n?β時,由兩平面平行的性質(zhì)定理,不能得出m∥n,③錯誤;對于④,當α⊥β,且α∩β=m,n?α,m⊥n時,由兩平面垂直的性質(zhì)定理,能夠得出n⊥β,④正確;綜上知,正確命題的序號是④.故答案為:④.【點睛】本題考查了直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的空間想象能力和推斷能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用正弦定理和余弦定理化簡,根據(jù)勾股定理逆定理求得.(2)設(shè),由此求得的表達式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè),,,由,根據(jù)正弦定理和余弦定理得.化簡整理得.由勾股定理逆定理得.(2)設(shè),,由(1)的結(jié)論知.在中,,由,所以.在中,,由,所以.所以,由,所以當,即時,取得最大值,且最大值為.【點睛】本小題考查正弦定理,余弦定理,勾股定理,解三角形,三角函數(shù)性質(zhì)及其三角恒等變換等基礎(chǔ)知識;考查運算求解能力,推理論證能力,化歸與轉(zhuǎn)換思想,應(yīng)用意識.18、(1);(2)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無極大值;(3)見解析.【解析】

(1)切點既在切線上又在曲線上得一方程,再根據(jù)斜率等于該點的導(dǎo)數(shù)再列一方程,解方程組即可;(2)先對求導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)判斷和求解即可.(3)把證明轉(zhuǎn)化為證明,然后證明極小值大于極大值即可.【詳解】解:(1)函數(shù)的定義域為由已知得,則,解得.(2)由題意得,則.當時,,所以單調(diào)遞減,當時,,所以單調(diào)遞增,所以,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無極大值.(3)要證成立,只需證成立.令,則,當時,單調(diào)遞增,當時,單調(diào)遞減,所以的極大值為,即由(2)知,時,,且的最小值點與的最大值點不同,所以,即.所以,.【點睛】知識方面,考查建立方程組求未知數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和極值以及不等式的證明;能力方面,考查推理論證能力、分析問題和解決問題的能力以及運算求解能力;試題難度大.19、(1);(2)【解析】

(1)根據(jù)三角形面積公式及平面向量數(shù)量積定義代入公式,即可求得,進而求得的值;(2)根據(jù)正弦定理將邊化為角,結(jié)合(1)中的值,即可將表達式化為的三角函數(shù)式;結(jié)合正弦和角公式與輔助角公式化簡,即可求得和,進而由正弦定理確定,代入整式即可求解.【詳解】(1)因為,所以由三角形面積公式及平面向量數(shù)量積運算可得,所以.因為,所以.(2)因為,所以由正弦定理代入化簡可得,由(1),代入可得,展開化簡可得,根據(jù)輔助角公式化簡可得.因為,所以,所以,所以為等腰三角形,且,所以.【點睛】本題考查了正弦定理在解三角形中的應(yīng)用,三角形面積公式的應(yīng)用,平面向量數(shù)量積的運算,正弦和角公式及輔助角公式的簡單應(yīng)用,屬于基礎(chǔ)題.20、(1)(2)【解析】

(1)用等比數(shù)列的首項和公比分別表示出已知條件,解方程組即可求得公比,代入等比數(shù)列的通項公式即可求得結(jié)果;(2)把(1)中求得的結(jié)果代入bn=an?log2an,求出bn,利用錯位相減法求出Tn.【詳解】(1)設(shè)數(shù)列的公比為,由題意知:,∴,即.∴,即.(2),∴.①.②①-②得∴.【點睛】本題考查等比數(shù)列的通項公式和等差中項的概念以及錯位相減法求和,考查運算能力,屬中檔題.21、(1)(2)證明見解析【解析】

(1)因為,所以,所以,即,又因為,所以數(shù)列為等差數(shù)列,且公差為1,首項為1,則,即.設(shè)的公差為,則,所以(),則(),所以,因此,綜上,.(2)設(shè)數(shù)列的前n項和為,則兩式相減得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論