版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省福州市羅源第一中學(xué)2025屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)f(x)=xex的單調(diào)增區(qū)間為()A.(-∞,-1) B.(-∞,e)C.(e,+∞) D.(-1,+∞)2.已知,,若,則()A.6 B.11C.12 D.223.如圖,在棱長為1的正方體中,P、Q、R分別是棱AB、BC、的中點,以PQR為底面作一個直三棱柱,使其另一個底面的三個頂點也都在正方體的表面上,則這個直三棱柱的體積為()A. B.C. D.4.已知呈線性相關(guān)的變量x與y的部分?jǐn)?shù)據(jù)如表所示:若其回歸直線方程是,則()x24568y34.5m7.59A.6.5 B.6C.6.1 D.75.已知點是拋物線上的動點,過點作圓的切線,切點為,則的最小值為()A. B.C. D.6.直線分別與軸,軸交于,兩點,點在圓上,則面積的取值范圍是A. B.C. D.7.若拋物線焦點與橢圓的右焦點重合,則的值為A. B.C. D.8.在中,已知,則的形狀是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.正三角形9.在中,,則邊的長等于()A. B.C. D.210.已知實數(shù)x,y滿足約束條件,則的最大值為()A. B.0C.3 D.511.如圖,把橢圓的長軸分成6等份,過每個分點作x軸的垂線交橢圓的上半部分于點,F(xiàn)是橢圓C的右焦點,則()A.20 B.C.36 D.3012.焦點為的拋物線標(biāo)準(zhǔn)方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線方程為______14.已知數(shù)列an滿足,則__________15.已知、分別為雙曲線的左、右焦點,為雙曲線右支上一點,滿足,直線與圓有公共點,則雙曲線的離心率的取值范圍是___________.16.函數(shù)在處的切線方程為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在對某老舊小區(qū)污水分流改造時,需要給該小區(qū)重新建造一座底面為矩形且容積為324立方米的三級污水處理池(平面圖如圖所示).已知池的深度為2米,如果池四周圍墻的建造單價為400元/平方米,中間兩道隔墻的建造單價為248元/平方米,池底的建造單價為80元/平方米,池蓋的建造單價為100元/平方米,建造此污水處理池相關(guān)人員的勞務(wù)費(fèi)以及其他費(fèi)用是9000元.(水池所有墻的厚度以及池底池蓋的厚度按相關(guān)規(guī)定執(zhí)行,計算時忽略不計)(1)現(xiàn)有財政撥款9萬元,如果將污水處理池的寬建成9米,那么9萬元的撥款是否夠用?(2)能否通過合理的設(shè)計污水處理池的長和寬,使總費(fèi)用最低?最低費(fèi)用為多少萬元?18.(12分)已知函數(shù).(I)當(dāng)時,求曲線在處的切線方程;(Ⅱ)若當(dāng)時,,求的取值范圍.19.(12分)已知直線,直線經(jīng)過點且與直線平行,設(shè)直線分別與x軸,y軸交于A,B兩點.(1)求點A和B的坐標(biāo);(2)若圓C經(jīng)過點A和B,且圓心C在直線上,求圓C的方程.20.(12分)設(shè)雙曲線的左、右焦點分別為,,且,一條漸近線的傾斜角為60°(1)求雙曲線C的標(biāo)準(zhǔn)方程和離心率;(2)求分別以,為左、右頂點,短軸長等于雙曲線虛軸長的橢圓的標(biāo)準(zhǔn)方程21.(12分)在平面直角坐標(biāo)系xOy中,圓O以原點為圓心,且經(jīng)過點.(1)求圓O的方程;(2)若直線與圓O交于兩點A,B,求弦長.22.(10分)如圖,在四棱錐中,底面滿足,,底面,且,.(1)證明平面;(2)求平面與平面的夾角.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】求出,令可得答案.【詳解】由已知得,令,得,故函數(shù)f(x)=xex的單調(diào)增區(qū)間為(-1,+∞).故選:D.2、C【解析】根據(jù)遞推關(guān)系式計算即可求出結(jié)果.【詳解】因為,,,則,,,故選:C.3、C【解析】分別取的中點,連接,利用棱柱的定義證明幾何體是三棱柱,再證明平面PQR,得到三棱柱是直三棱柱求解.【詳解】如圖所示:連接,分別取其中點,連接,則,且,所以幾何體是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因為正方體的棱長為1,所以,所以直三棱柱的體積為,故選:C4、A【解析】根據(jù)回歸直線過樣本點的中心進(jìn)行求解即可.【詳解】由題意可得,,則,解得故選:A.5、C【解析】分析可知圓的圓心為拋物線的焦點,可求出的最小值,再利用勾股定理可求得的最小值.【詳解】設(shè)點的坐標(biāo)為,有,由圓的圓心坐標(biāo)為,是拋物線的焦點坐標(biāo),有,由圓的幾何性質(zhì)可得,又由,可得的最小值為故選:C.6、A【解析】分析:先求出A,B兩點坐標(biāo)得到再計算圓心到直線距離,得到點P到直線距離范圍,由面積公式計算即可詳解:直線分別與軸,軸交于,兩點,則點P在圓上圓心為(2,0),則圓心到直線距離故點P到直線的距離的范圍為則故答案選A.點睛:本題主要考查直線與圓,考查了點到直線的距離公式,三角形的面積公式,屬于中檔題7、D【解析】解:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則,故選D8、B【解析】利用誘導(dǎo)公式、兩角和的正弦公式化簡已知條件,由此判斷出三角形的形狀.【詳解】由,得,得,由于,所以,所以.故選:B9、A【解析】由余弦定理求解【詳解】由余弦定理,得,即,解得(負(fù)值舍去)故選:A10、D【解析】先畫出可行域,由,得,作出直線,向上平移過點A時,取得最大值,求出點A的坐標(biāo),代入可求得結(jié)果【詳解】不等式組表示的可行域,如圖所示由,得,作出直線,向上平移過點A時,取得最大值,由,得,即,所以的最大值為,故選:D11、D【解析】由橢圓的對稱性可知,,代入計算可得答案.【詳解】設(shè)橢圓左焦點為,連接由橢圓的對稱性可知,,所以.故選:D.12、D【解析】設(shè)拋物線的方程為,根據(jù)題意,得到,即可求解.【詳解】由題意,設(shè)拋物線的方程為,因為拋物線的焦點為,可得,解得,所以拋物線的方程為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求得的導(dǎo)數(shù),可得切線的斜率和切點,由斜截式方程可得切線方程【詳解】解:的導(dǎo)數(shù)為,可得曲線在處的切線斜率為,切點為,即有切線方程為故答案為【點睛】本題考查導(dǎo)數(shù)的運(yùn)用:求切線方程,考查導(dǎo)數(shù)的幾何意義,直線方程的運(yùn)用,考查方程思想,屬于基礎(chǔ)題14、2019【解析】將已知化為代入可以左右相消化簡,將已知化為,代入可以上下相消化簡,再全部代入求解即可.【詳解】由知故所以故答案為:201915、【解析】過點作于,過點作于,利用雙曲線的定義以及勾股定理可求得,由已知可得,可得出關(guān)于、的齊次不等式,結(jié)合可求得的取值范圍.【詳解】過點作于,過點作于,因為,所以,又因為,所以,故,又因為,且,所以,因此,所以,又因為直線與圓有公共點,所以,故,即,則,所以,又因為雙曲線的離心率,所以.故答案為:.16、【解析】求得函數(shù)的導(dǎo)數(shù),得到且,結(jié)合直線的點斜式方程,即可求解.【詳解】由題意,函數(shù),可得,則且,所以函數(shù)在處的切線方程為,即,即切線方程為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)不夠;(2)將污水處理池建成長為16.2米,寬為10米時,建造總費(fèi)用最低,最低費(fèi)用為90000元.【解析】(1)根據(jù)題意結(jié)合單價直接計算即可得出;(2)設(shè)污水處理池的寬為米,表示出總費(fèi)用,利用基本不等式可求.【小問1詳解】如果將污水處理池的寬建成9米,則長為(米),建造總費(fèi)用為:(元)因為,所以如果污水處理池的寬建成9米,那么9萬元的撥款是不夠用的.【小問2詳解】設(shè)污水處理池的寬為米,建造總費(fèi)用為元,則污水處理池的長為米.則因為,等號僅當(dāng),即時成立,所以時建造總費(fèi)用取最小值90000,所以將污水處理池建成長為16.2米,寬為10米時,建造總費(fèi)用最低,最低費(fèi)用為90000元.18、(1)(2)【解析】(Ⅰ)先求的定義域,再求,,,由直線方程的點斜式可求曲線在處的切線方程為(Ⅱ)構(gòu)造新函數(shù),對實數(shù)分類討論,用導(dǎo)數(shù)法求解.試題解析:(I)定義域為.當(dāng)時,,曲線在處的切線方程為(II)當(dāng)時,等價于設(shè),則,(i)當(dāng),時,,故在上單調(diào)遞增,因此;(ii)當(dāng)時,令得.由和得,故當(dāng)時,,在單調(diào)遞減,因此.綜上,的取值范圍是【考點】導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性【名師點睛】求函數(shù)的單調(diào)區(qū)間的方法:(1)確定函數(shù)y=f(x)定義域;(2)求導(dǎo)數(shù)y′=f′(x);(3)解不等式f′(x)>0,解集在定義域內(nèi)的部分為單調(diào)遞增區(qū)間;(4)解不等式f′(x)<0,解集在定義域內(nèi)的部分為單調(diào)遞減區(qū)間19、(1),;(2).【解析】(1)由直線平行及所過的點,應(yīng)用點斜式寫出直線方程,進(jìn)而求A、B坐標(biāo).(2)由(1)求出垂直平分線方程,并聯(lián)立直線求圓心坐標(biāo),即可求圓的半徑,進(jìn)而寫出圓C的方程.【小問1詳解】由題設(shè),的斜率為,又直線與直線平行且過,所以直線為,即,令,則;令,則.所以,.【小問2詳解】由(1)可得:垂直平分線為,即,聯(lián)立,可得,即,故圓的半徑為,所以圓C的方程為.20、(1),2(2)【解析】(1)結(jié)合,聯(lián)立即得解;(2)由題意,即得解.【詳解】(1)由題意,又解得:故雙曲線C的標(biāo)準(zhǔn)方程為:,離心率為(2)由題意橢圓的焦點在軸上,設(shè)橢圓方程為故即橢圓方程為:21、(1)(2)【解析】(1)根據(jù)兩點距離公式即可求半徑,進(jìn)而得圓方程;(2)根據(jù)直線與圓的弦長公式即可求解【小問1詳解】由,所以圓O的方程為;【小問2詳解】由點O到直線的距離為所以弦長22、(1)證明見解析(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育心理學(xué)提升訓(xùn)練試卷A卷附答案
- 2024年度山西省高校教師資格證之高等教育法規(guī)能力測試試卷A卷附答案
- 2024年微波集成電路AL2O3基片項目資金申請報告代可行性研究報告
- 四年級數(shù)學(xué)(四則混合運(yùn)算)計算題專項練習(xí)與答案
- 2024年反擔(dān)保協(xié)議法律文件樣式
- 生態(tài)農(nóng)業(yè)園建設(shè)項目可行性研究報告
- 2024年勞動協(xié)議監(jiān)管手冊內(nèi)容概覽
- 2024年期辦公場所租賃協(xié)議模板
- 2024室內(nèi)涂裝批白施工服務(wù)協(xié)議
- 2024新裝修工程項目協(xié)議
- 骨盆-教學(xué)講解課件
- 做好新形勢下群眾工作培訓(xùn)課件
- 賽課一等獎《林黛玉進(jìn)賈府》課件3
- 《世間最美的墳?zāi)埂稰PT
- 中國古代儒家思想的發(fā)展演變教學(xué)設(shè)計
- 慢性阻塞性肺疾病(-COPD)的藥物治療及合理用藥課件
- 廣電全媒體運(yùn)營知識考試題庫(含答案)
- 商業(yè)插畫設(shè)計 02課件
- DB37-T 3799-2019 城鎮(zhèn)冬季供熱服務(wù)規(guī)范-(高清版)
- 六年級上冊美術(shù)課件-10 流動的風(fēng)景線 |浙美版(2014秋)(共13張PPT)
- 市政工程管理制度4篇
評論
0/150
提交評論