版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第第頁(yè)2.2基本不等式課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①掌握重要的不等式、基本不等式(均值不等式)的內(nèi)容,成立條件及公式的證明。②利用基本不等式的性質(zhì)及變形求相關(guān)函數(shù)的最值及證明。通過本節(jié)課的學(xué)習(xí),要求掌握基本不等式成立的條件,運(yùn)用基本不等式這一重要的工具解決與最值有關(guān)的問題,會(huì)用基本不等式解決簡(jiǎn)單問題的證明.知識(shí)點(diǎn)一:基本不等式(一正,二定,三相等,特別注意“一正”,“三相等”這兩類陷阱)基本不等式:SKIPIF1<0SKIPIF1<0,SKIPIF1<0,(當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取“SKIPIF1<0”號(hào))其中SKIPIF1<0叫做正數(shù)SKIPIF1<0,SKIPIF1<0的幾何平均數(shù);SKIPIF1<0叫做正數(shù)SKIPIF1<0,SKIPIF1<0的算數(shù)平均數(shù).如果SKIPIF1<0SKIPIF1<0,有SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取“SKIPIF1<0”號(hào))特別的,如果SKIPIF1<0,用SKIPIF1<0分別代替SKIPIF1<0,代入SKIPIF1<0,可得:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),“SKIPIF1<0”號(hào)成立.知識(shí)點(diǎn)二:利用基本不等式求最值①已知SKIPIF1<0,SKIPIF1<0是正數(shù),如果積SKIPIF1<0等于定值SKIPIF1<0,那么當(dāng)且僅當(dāng)SKIPIF1<0時(shí),和SKIPIF1<0有最小值SKIPIF1<0;②已知SKIPIF1<0,SKIPIF1<0是正數(shù),如果和SKIPIF1<0等于定值SKIPIF1<0,那么當(dāng)且僅當(dāng)SKIPIF1<0時(shí),積SKIPIF1<0有最大值SKIPIF1<0;知識(shí)點(diǎn)三:基本不等式鏈SKIPIF1<0(其中SKIPIF1<0,SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取“SKIPIF1<0”號(hào))知識(shí)點(diǎn)四:三個(gè)正數(shù)的基本不等式如果SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,那么SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取“SKIPIF1<0”號(hào))題型01對(duì)基本不等式的理解【典例1】(2023·全國(guó)·高三專題練習(xí))下列不等式恒成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】解:對(duì)于A選項(xiàng),當(dāng)SKIPIF1<0時(shí),不等式顯然不成立,故錯(cuò)誤;對(duì)于B選項(xiàng),SKIPIF1<0成立的條件為SKIPIF1<0,故錯(cuò)誤;對(duì)于C選項(xiàng),當(dāng)SKIPIF1<0時(shí),不等式顯然不成立,故錯(cuò)誤;對(duì)于D選項(xiàng),由于SKIPIF1<0,故SKIPIF1<0,正確.故選:D【典例2】(多選)(2023秋·廣東廣州·高一廣州四十七中校考期末)以下結(jié)論正確的是(
)A.函數(shù)SKIPIF1<0的最小值是4B.若SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0的最小值為3D.函數(shù)SKIPIF1<0的最大值為0【答案】BD【詳解】A.對(duì)于函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以A選項(xiàng)錯(cuò)誤.B.由于SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以B選項(xiàng)正確.C.SKIPIF1<0,但SKIPIF1<0無解,所以等號(hào)不成立,所以C選項(xiàng)錯(cuò)誤.D.由于SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以D選項(xiàng)正確.故選:BD【變式1】(2023·高一課時(shí)練習(xí))下列不等式中正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】A.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故錯(cuò)誤;B.SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),取等號(hào),故正確;C.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故錯(cuò)誤;D.由重要不等式得SKIPIF1<0,故錯(cuò)誤;故選:B題型02由基本不等式比較大小【典例1】(多選)(2022秋·江蘇南京·高一南京師大附中??计谥校┰O(shè)SKIPIF1<0為正實(shí)數(shù),SKIPIF1<0,則下列不等式中對(duì)一切滿足條件的SKIPIF1<0恒成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【詳解】A選項(xiàng),由基本不等式得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,A選項(xiàng)正確.B選項(xiàng),SKIPIF1<0時(shí),SKIPIF1<0,但SKIPIF1<0,B選項(xiàng)錯(cuò)誤.C選項(xiàng),由基本不等式得SKIPIF1<0,,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,C選項(xiàng)正確.D選項(xiàng),SKIPIF1<0時(shí),SKIPIF1<0,但SKIPIF1<0,D選項(xiàng)錯(cuò)誤.故選:AC【典例2】(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0且SKIPIF1<0,下列各式中最大的是_____.(填序號(hào))①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.【答案】④【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由基本不等式可知SKIPIF1<0,所以SKIPIF1<0,由上可知,SKIPIF1<0,SKIPIF1<0,所以四個(gè)式子中SKIPIF1<0最大.故答案為:④.【變式1】(多選)(2022秋·廣東汕頭·高一汕頭市聿懷中學(xué)??计谥校┤鬝KIPIF1<0.且SKIPIF1<0,則下列不等式恒成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CD【詳解】SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,則SKIPIF1<0或SKIPIF1<0,則SKIPIF1<0,即AB錯(cuò)誤,D正確.對(duì)于C選項(xiàng),SKIPIF1<0,C選項(xiàng)正確.故選:CD題型03由基本不等式證明不等關(guān)系【典例1】(2023春·上海嘉定·高一統(tǒng)考階段練習(xí))已知SKIPIF1<0是實(shí)數(shù).(1)求證:SKIPIF1<0,并指出等號(hào)成立的條件;(2)若SKIPIF1<0,求SKIPIF1<0的最小值.【答案】(1)證明見解析,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),不等式等號(hào)成立(2)4【詳解】(1)證明:因?yàn)镾KIPIF1<0SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),不等式中等號(hào)成立.(2)SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0時(shí),不等式中等號(hào)成立.所以SKIPIF1<0的最小值為4.【典例2】(2023秋·陜西榆林·高一統(tǒng)考期末)已知SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的最大值;(2)若SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)9(2)證明見解析【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時(shí),等號(hào)成立,故SKIPIF1<0的最大值為9.(2)證明:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立.故SKIPIF1<0.【變式1】(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0都是正數(shù),且SKIPIF1<0.求證:(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)證明見解析;(2)證明見解析.【詳解】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由于當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),但SKIPIF1<0,因此不能取等號(hào),SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),但SKIPIF1<0,因此不能取等號(hào),SKIPIF1<0.題型04利用基本不等式求積的最大值【典例1】(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,則函數(shù)SKIPIF1<0的最大值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí)等號(hào)成立,因此,函數(shù)SKIPIF1<0,SKIPIF1<0的最大值為SKIPIF1<0,故選:C.【典例2】(2023·全國(guó)·高三專題練習(xí))SKIPIF1<0,SKIPIF1<0的最大值為_________.【答案】SKIPIF1<0/SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,由基本不等式可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.所以SKIPIF1<0,SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.【變式1】(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0的最大值為________.【答案】SKIPIF1<0【詳解】SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立.故答案為:SKIPIF1<0.題型05利用基本不等式求和的最小值【典例1】(2023春·北京·高二北京市陳經(jīng)綸中學(xué)??计谥校┰O(shè)SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.5 B.3 C.4 D.9【答案】A【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),所以SKIPIF1<0的最小值為SKIPIF1<0,故選:A.【典例2】(2023·貴州貴陽(yáng)·校聯(lián)考模擬預(yù)測(cè))若SKIPIF1<0,則SKIPIF1<0的最小值為__________.【答案】3【詳解】因?yàn)镾KIPIF1<0,由基本不等式得:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立.故答案為:3【變式1】(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值為______【答案】8【詳解】因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,則SKIPIF1<0的最小值為8.故答案為:SKIPIF1<0題型06利用基本不等式求二次與二次(一次)商式的最值【典例1】(2022·高一課時(shí)練習(xí))已知SKIPIF1<0,則SKIPIF1<0的最小值為___________.【答案】SKIPIF1<0【詳解】令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),所以SKIPIF1<0的在最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【典例2】(2023·全國(guó)·高三專題練習(xí))(1)求函數(shù)SKIPIF1<0的最小值及此時(shí)SKIPIF1<0的值;(2)已知函數(shù)SKIPIF1<0,SKIPIF1<0,求此函數(shù)的最小值及此時(shí)SKIPIF1<0的值.【答案】(1)函數(shù)SKIPIF1<0的最小值為5,此時(shí)SKIPIF1<0;(2)函數(shù)SKIPIF1<0的最小值為5,此時(shí)SKIPIF1<0.【詳解】(1)∵SKIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),等號(hào)成立.故函數(shù)SKIPIF1<0的最小值為5,此時(shí)SKIPIF1<0;(2)令SKIPIF1<0,將SKIPIF1<0代入得:SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.故函數(shù)SKIPIF1<0的最小值為5,此時(shí)SKIPIF1<0.【變式1】(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0的最小值為___________.【答案】9【詳解】因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)等號(hào)成立,∴已知函數(shù)的最小值為9.故答案為:9.題型07利用基本不等式求條件等式求最值【典例1】(2023春·河南·高一校聯(lián)考期中)已知正實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.3 B.1 C.9 D.SKIPIF1<0【答案】B【詳解】因?yàn)镾KIPIF1<0,變形得SKIPIF1<0.由題意SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.故選:B.【典例2】(2023·全國(guó)·高一專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值為______.【答案】3【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;因?yàn)镾KIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取到等號(hào),所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍)所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最小值3.故答案為:3【變式1】(2023秋·廣東·高三統(tǒng)考學(xué)業(yè)考試)若正數(shù)x,y滿足SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.6 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】因?yàn)檎龜?shù)x,y滿足SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0的最小值為SKIPIF1<0故選:B題型08基本不等式中的恒成立問題【典例1】(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,若不等式SKIPIF1<0恒成立,則實(shí)數(shù)m的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】B【詳解】SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,解得SKIPIF1<0,即SKIPIF1<0.因?yàn)椴坏仁絊KIPIF1<0恒成立,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:B【典例2】(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0、SKIPIF1<0,若SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】因?yàn)镾KIPIF1<0、SKIPIF1<0,由已知可得SKIPIF1<0,因?yàn)镾KIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,故實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0,故選:D.【典例3】(2023·高三課時(shí)練習(xí))若對(duì)任意SKIPIF1<0,SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍是_____.【答案】SKIPIF1<0【詳解】SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,SKIPIF1<0.故答案為:SKIPIF1<0.【變式1】(2023·全國(guó)·高三專題練習(xí))已知x>0,y>0,且SKIPIF1<0+SKIPIF1<0=1,若SKIPIF1<0恒成立,則實(shí)數(shù)m的取值范圍是(
)A.m≤-2SKIPIF1<0或m≥2SKIPIF1<0 B.m≤-4或m≥2C.-2<m<4 D.-2SKIPIF1<0<m<2SKIPIF1<0【答案】D【詳解】∵x>0,y>0且SKIPIF1<0,SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0,即x=4,y=2時(shí)取等號(hào),∴(x+2y)min=8,要使x+2y>m2恒成立,只需(x+2y)min>m2恒成立,即8>m2,解得SKIPIF1<0.故選:D【變式2】(2023·全國(guó)·高三專題練習(xí))當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào)),SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.3.(2023·全國(guó)·高三專題練習(xí))對(duì)任意的正實(shí)數(shù)SKIPIF1<0,不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】解:SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0又SKIPIF1<0當(dāng)且僅當(dāng)“SKIPIF1<0”,即“SKIPIF1<0”時(shí)等號(hào)成立,即SKIPIF1<0,故SKIPIF1<0.故選:C.題型09基本不等式的應(yīng)用【典例1】(2023·全國(guó)·高三專題練習(xí))某公司購(gòu)買一批機(jī)器投入生產(chǎn),據(jù)市場(chǎng)分析,每臺(tái)機(jī)器生產(chǎn)的產(chǎn)品可獲得的總利潤(rùn)SKIPIF1<0(單位:萬元)與機(jī)器運(yùn)轉(zhuǎn)時(shí)間SKIPIF1<0(單位:年)的關(guān)系為SKIPIF1<0,則每臺(tái)機(jī)器為該公司創(chuàng)造的年平均利潤(rùn)的最大值是________萬元.【答案】SKIPIF1<0.【詳解】每臺(tái)機(jī)器運(yùn)轉(zhuǎn)SKIPIF1<0年的年平均利潤(rùn)為SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,此時(shí)每臺(tái)機(jī)器為該公司創(chuàng)造的年平均利潤(rùn)最大,最大值為SKIPIF1<0萬元.故答案為:SKIPIF1<0【典例2】(2023秋·內(nèi)蒙古通遼·高一校聯(lián)考期末)黨的二十大報(bào)告指出:我們要推進(jìn)美麗中國(guó)建設(shè),堅(jiān)持山水林田湖草沙一體化保護(hù)和系統(tǒng)治理,統(tǒng)籌產(chǎn)業(yè)結(jié)構(gòu)調(diào)整、污染治理、生態(tài)保護(hù)、應(yīng)對(duì)氣候變化,協(xié)同推進(jìn)降碳、減污、擴(kuò)綠、增長(zhǎng),推進(jìn)生態(tài)優(yōu)先、節(jié)約集約、綠色低碳發(fā)展.某鄉(xiāng)政府也越來越重視生態(tài)系統(tǒng)的重建和維護(hù).若鄉(xiāng)財(cái)政下?lián)芤豁?xiàng)???00百萬元,分別用于植綠護(hù)綠和處理污染兩個(gè)生態(tài)維護(hù)項(xiàng)目,植綠護(hù)綠項(xiàng)目五年內(nèi)帶來的生態(tài)收益可表示為投放資金SKIPIF1<0(單位:百萬元)的函數(shù)SKIPIF1<0(單位:百萬元):SKIPIF1<0;處理污染項(xiàng)目五年內(nèi)帶來的生態(tài)收益可表示為投放資金SKIPIF1<0(單位:百萬元)的函數(shù)SKIPIF1<0(單位:百萬元):SKIPIF1<0.(1)設(shè)分配給植綠護(hù)綠項(xiàng)目的資金為SKIPIF1<0(百萬元),則兩個(gè)生態(tài)項(xiàng)目五年內(nèi)帶來的收益總和為SKIPIF1<0(百萬元),寫出SKIPIF1<0關(guān)于SKIPIF1<0的函數(shù)解析式;(2)生態(tài)維護(hù)項(xiàng)目的投資開始利潤(rùn)薄弱,只有持之以恒,才能功在當(dāng)代,利在千秋.試求出SKIPIF1<0的最大值,并求出此時(shí)對(duì)兩個(gè)生態(tài)項(xiàng)目的投資分別為多少?【答案】(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0的最大值為145(百萬元),分別投資給植綠護(hù)綠項(xiàng)目、污染處理項(xiàng)目的資金為60(百萬元),340(百萬元).【詳解】(1)解:由題意可得處理污染項(xiàng)目投放資金為SKIPIF1<0百萬元,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0.(2)解:由(1)可得,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,此時(shí)SKIPIF1<0.所以SKIPIF1<0的最大值為SKIPIF1<0(百萬元),分別投資給植綠護(hù)綠項(xiàng)目、污染處理項(xiàng)目的資金為SKIPIF1<0(百萬元),SKIPIF1<0(百萬元).【變式1】(2023春·湖南·高三校聯(lián)考階段練習(xí))某社區(qū)計(jì)劃在一塊空地上種植花卉,已知這塊空地是面積為1800平方米的矩形SKIPIF1<0,為了方便居民觀賞,在這塊空地中間修了如圖所示的三條寬度為2米的人行通道,則種植花卉區(qū)域的面積的最大值是(
)A.1208平方米 B.1448平方米 C.1568平方米 D.1698平方米【答案】C【詳解】設(shè)SKIPIF1<0米,SKIPIF1<0,則種植花卉區(qū)域的面積SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,則SKIPIF1<0,即當(dāng)SKIPIF1<0米,SKIPIF1<0米時(shí),種植花卉區(qū)域的面積取得最大值,最大值是1568平方米,故選:C【變式2】(2023·全國(guó)·高一專題練習(xí))為了豐富全校師生的課后學(xué)習(xí)生活,共建和諧美好的校園文化,重慶十一中計(jì)劃新建校園圖書館精品閱讀區(qū)SKIPIF1<0,該項(xiàng)目由圖書陳列區(qū)SKIPIF1<0(陰影部分)和四周休息區(qū)組成.圖書陳列區(qū)SKIPIF1<0的面積為SKIPIF1<0,休息區(qū)的寬分別為2m和5m(如圖所示).當(dāng)校園圖書館精品閱讀區(qū)SKIPIF1<0面積最小時(shí),則圖書陳列區(qū)SKIPIF1<0的邊長(zhǎng)為(
)A.20m B.50m C.SKIPIF1<0m D.100m【答案】B【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0所以閱讀區(qū)SKIPIF1<0的面積SKIPIF1<0SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)取等號(hào),當(dāng)校園圖書館精品閱讀區(qū)SKIPIF1<0面積最小時(shí),則圖書陳列區(qū)SKIPIF1<0的邊長(zhǎng)為SKIPIF1<0,故選:B.題型10對(duì)鉤函數(shù)【典例1】(2023春·遼寧朝陽(yáng)·高二北票市高級(jí)中學(xué)校考階段練習(xí))“SKIPIF1<0”是“函數(shù)SKIPIF1<0的最小值大于4”的(
).A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】C【詳解】解:若SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0;若SKIPIF1<0的最小值大于4,則SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,故選:C.【典例2】(2023·高三課時(shí)練習(xí))設(shè)SKIPIF1<0,則SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【詳解】設(shè)函數(shù)SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,此時(shí)SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,此時(shí)SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0的取值范圍是SKIPIF1<0,故答案為:SKIPIF1<0【變式1】(2023秋·江西吉安·高一江西省萬安中學(xué)??计谀┮阎瘮?shù)SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0有最小值4 B.SKIPIF1<0有最大值4 C.SKIPIF1<0有最小值SKIPIF1<0 D.SKIPIF1<0有最大值SKIPIF1<0【答案】D【詳解】解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),SKIPIF1<0有最大值SKIPIF1<0.故選:D.【變式2】(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0取得的最小值時(shí),SKIPIF1<0的值為___________.【答案】4【詳解】SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.故SKIPIF1<0的最小值為6.故答案為:4題型11重點(diǎn)方法之湊配法【典例1】(2023·全國(guó)·高一專題練習(xí))已知實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.0 C.4 D.8【答案】B【詳解】由SKIPIF1<0得到SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0上式取等號(hào),則SKIPIF1<0的最大值為0.故選:B.【典例2】(2023·陜西榆林·統(tǒng)考三模)若不等式SKIPIF1<0對(duì)SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍是__________,SKIPIF1<0的最小值為__________.【答案】SKIPIF1<0SKIPIF1<0【詳解】當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0對(duì)SKIPIF1<0不恒成立,不符合題意(舍去);當(dāng)SKIPIF1<0時(shí),要使得SKIPIF1<0對(duì)SKIPIF1<0恒成立,則滿足SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.因?yàn)镾KIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.【變式1】(2023·全國(guó)·高三專題練習(xí))當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為10,則SKIPIF1<0(
)A.1 B.SKIPIF1<0 C.2SKIPIF1<0 D.4【答案】A【詳解】當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0.故選:A.【變式2】(2023·全國(guó)·高一專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.-2 B.0 C.1 D.SKIPIF1<0【答案】B【詳解】∵SKIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)等號(hào)成立.故選:B.題型12重點(diǎn)方法之換元法【典例1】(2023·全國(guó)·高三專題練習(xí))若實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值為___________.【答案】SKIPIF1<0【詳解】令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0.所以SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.【典例2】(2023·江西·高一寧岡中學(xué)??茧A段練習(xí))SKIPIF1<0的最大值為______.【答案】SKIPIF1<0【詳解】令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.所以SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.題型13重點(diǎn)方法之“1”的妙用法【典例1】(2023春·湖南·高一校聯(lián)考期中)已知正實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由已知可得,SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí),等號(hào)成立.所以,SKIPIF1<0的最小值是SKIPIF1<0.故選:C.【典例2】(2023春·江西宜春·高三江西省豐城中學(xué)??奸_學(xué)考試)已知正數(shù)SKIPIF1<0滿足SKIPIF1<0恒成立,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.3【答案】B【詳解】由SKIPIF1<0得SKIPIF1<0,于是SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0等號(hào)成立.所以SKIPIF1<0的最小值為SKIPIF1<0.故選:B.【典例3】(2023·全國(guó)·高三專題練習(xí))已知正數(shù)SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,求SKIPIF1<0的最小值為____________.【答案】SKIPIF1<0/SKIPIF1<0【詳解】因?yàn)檎龜?shù)SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),取等號(hào),所以SKIPIF1<0的最小值為SKIPIF1<0,故答案為:SKIPIF1<0.【變式1】(2023·海南海口·校聯(lián)考模擬預(yù)測(cè))若正實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0.則SKIPIF1<0的最小值為(
)A.12 B.25 C.27 D.36【答案】C【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí),等號(hào)成立,所以,SKIPIF1<0的最小值為27.故選:C【變式2】(2023·全國(guó)·高三專題練習(xí))已知正數(shù)SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,求SKIPIF1<0的最小值為____________;【答案】SKIPIF1<0/SKIPIF1<0【詳解】SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.題型14重點(diǎn)方法之消元法【典例1】(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為__________.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào)),所以SKIPIF1<0的最小值為SKIPIF1<0,故答案為:SKIPIF1<0.【典例2】(2023春·上?!じ呷虾J袑?shí)驗(yàn)學(xué)校??茧A段練習(xí))若正數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值為__________.【答案】SKIPIF1<0【詳解】由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0取得最大值SKIPIF1<0.故答案為:SKIPIF1<0.【變式1】(2023·上海奉賢·校考模擬預(yù)測(cè))已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為___________.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,解得:SKIPIF1<0,則SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),“=”成立,故答案為:SKIPIF1<0.題型15易錯(cuò)題之忽視基本不等式中的“一正”【典例1】(多選)(2023秋·江蘇蘇州·高一蘇州市蘇州高新區(qū)第一中學(xué)校聯(lián)考階段練習(xí))下列關(guān)于使用基本不等式說法正確的是(
)A.由于SKIPIF1<0,所以x+SKIPIF1<0=x+2+SKIPIF1<0-2≤-2SKIPIF1<0-2=-4B.由于SKIPIF1<0,所以SKIPIF1<0C.由于SKIPIF1<0,故SKIPIF1<0最小值為2D.由于SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0最大值為SKIPIF1<0【答案】AD【詳解】對(duì)于A,由于SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)等號(hào)成立正確;對(duì)于B,正具備,但SKIPIF1<0不為定值,故錯(cuò)誤;對(duì)于C,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,但方程無解,最小值2取不到,故錯(cuò)誤;對(duì)于D,一正,二定,三相等都具備,故正確.故選:AD【典例2】(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0的最大值為________.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0≤SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.題型16易錯(cuò)題之忽視基本不等式中的“三相等”【典例1】(2023·上海普陀·高一??计谥校┫铝胁坏仁街械忍?hào)可以取到的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】解:對(duì)于A,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,故等號(hào)不成立,故A不符合;對(duì)于B,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,故等號(hào)不成立,故B不符合;對(duì)于C,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),故C符合;對(duì)于D,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,故等號(hào)不成立,故D不符合.故選:C.【典例2】(2023·江西贛州·高三校聯(lián)考期中)下列幾個(gè)不等式中,不能取到等號(hào)的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】對(duì)A,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0等號(hào)成立;對(duì)B,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0等號(hào)成立;對(duì)C,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)等號(hào)成立;對(duì)D,當(dāng)且僅當(dāng)SKIPIF1<0得SKIPIF1<0時(shí)等號(hào)成立,無解,等號(hào)不成立.故選:D.題型17易錯(cuò)題之換元必?fù)Q范圍【典例1】(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,若不等式SKIPIF1<0恒成立,則SKIPIF1<0的最大值為______.【答案】SKIPIF1<0/SKIPIF1<0【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0不成立,所以SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0.所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,于是SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.由對(duì)勾函數(shù)的圖象知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0,即SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.2.2基本不等式A夯實(shí)基礎(chǔ)一、單選題1.(2023·全國(guó)·高一專題練習(xí))SKIPIF1<0的最小值為(
)A.2 B.3 C.4 D.5【答案】C【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)等號(hào)成立.所以當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有最小值4.故選:C.2.(2023·全國(guó)·高一專題練習(xí))已知正數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】因?yàn)檎龜?shù)SKIPIF1<0滿足SKIPIF1<0,所以有SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),故選:B3.(2023·全國(guó)·高三專題練習(xí))“SKIPIF1<0”是“SKIPIF1<0”的(
)A.充要條件 B.必要不充分條件C.充分不必要條件 D.既不充分也不必要條件【答案】C【詳解】由SKIPIF1<0知,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以充分性成立;由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0或SKIPIF1<0,所以必要性不成立,所以“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件,故選:C.4.(2023秋·四川成都·高二四川省成都市新都一中校聯(lián)考期末)若兩個(gè)正實(shí)數(shù)x,y滿足SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.2 C.4 D.SKIPIF1<0【答案】C【詳解】∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取“=”.故選:C5.(2023·重慶沙坪壩·重慶南開中學(xué)校考模擬預(yù)測(cè))已知SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKI
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度工程合同糾紛處理合同學(xué)習(xí)班3篇
- 二零二五年度房地產(chǎn)租賃合同擔(dān)保風(fēng)險(xiǎn)控制策略3篇
- 二零二五年度影視制作公司演員雇傭合同模板3篇
- 蛋糕生產(chǎn)課程設(shè)計(jì)書
- 二零二五年度房貸轉(zhuǎn)按揭合同打印樣本2篇
- 二零二五年度合同負(fù)債科目界定與審計(jì)準(zhǔn)則合同3篇
- 海南職業(yè)技術(shù)學(xué)院《腫瘤放射治療學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度文化衍生品定制合同協(xié)議3篇
- 海南衛(wèi)生健康職業(yè)學(xué)院《計(jì)算機(jī)輔助設(shè)計(jì)三維圖形》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年醫(yī)療設(shè)備檢測(cè)與認(rèn)證服務(wù)協(xié)議3篇
- 山東省煙臺(tái)市2025屆高三上學(xué)期期末學(xué)業(yè)水平診斷政治試卷(含答案)
- 2025北京石景山初二(上)期末數(shù)學(xué)真題試卷(含答案解析)
- 商場(chǎng)停車場(chǎng)管理制度
- 北師大版四年級(jí)下冊(cè)數(shù)學(xué)課件第1課時(shí) 買文具
- 青貯產(chǎn)品銷售合同樣本
- 2024年冷庫(kù)倉(cāng)儲(chǔ)服務(wù)協(xié)議3篇
- 中國(guó)轎貨車的車保養(yǎng)項(xiàng)目投資可行性研究報(bào)告
- 人工智能在體育訓(xùn)練中的應(yīng)用
- 2024-2030年中國(guó)液態(tài)金屬行業(yè)市場(chǎng)分析報(bào)告
- 住宅樓智能化系統(tǒng)工程施工組織設(shè)計(jì)方案
- 高二上學(xué)期數(shù)學(xué)北師大版(2019)期末模擬測(cè)試卷A卷(含解析)
評(píng)論
0/150
提交評(píng)論