江蘇省常州市金壇區(qū)2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第1頁
江蘇省常州市金壇區(qū)2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第2頁
江蘇省常州市金壇區(qū)2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第3頁
江蘇省常州市金壇區(qū)2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第4頁
江蘇省常州市金壇區(qū)2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省常州市金壇區(qū)2023-2024學年中考數(shù)學對點突破模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列方程中,沒有實數(shù)根的是()A. B.C. D.2.二次函數(shù)y=ax2+bx﹣2(a≠0)的圖象的頂點在第三象限,且過點(1,0),設(shè)t=a﹣b﹣2,則t值的變化范圍是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<03.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數(shù)為()A.50° B.110° C.130° D.150°4.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,其頂點坐標為A(﹣1,﹣3),與x軸的一個交點為B(﹣3,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集為﹣3<x<﹣1;③拋物線與x軸的另一個交點是(3,0);④方程ax2+bx+c+3=0有兩個相等的實數(shù)根;其中正確的是()A.①③ B.②③ C.③④ D.②④5.在平面直角坐標系中,將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是()A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)6.如圖,A,B兩點分別位于一個池塘的兩端,小聰想用繩子測量A,B間的距離,但繩子不夠長,一位同學幫他想了一個主意:先在地上取一個可以直接到達A,B的點C,找到AC,BC的中點D,E,并且測出DE的長為10m,則A,B間的距離為()A.15m B.25m C.30m D.20m7.下列計算正確的是()A.2m+3n=5mnB.m2?m3=m6C.m8÷m6=m2D.(﹣m)3=m38.如圖,在等邊三角形ABC中,點P是BC邊上一動點(不與點B、C重合),連接AP,作射線PD,使∠APD=60°,PD交AC于點D,已知AB=a,設(shè)CD=y,BP=x,則y與x函數(shù)關(guān)系的大致圖象是()A. B. C. D.9.下列多邊形中,內(nèi)角和是一個三角形內(nèi)角和的4倍的是()A.四邊形B.五邊形C.六邊形D.八邊形10.小剛從家去學校,先勻速步行到車站,等了幾分鐘后坐上了公交車,公交車勻速行駛一段時后到達學校,小剛從家到學校行駛路程s(單位:m)與時間r(單位:min)之間函數(shù)關(guān)系的大致圖象是()A. B. C. D.11.如圖所示,有一條線段是()的中線,該線段是().A.線段GH B.線段AD C.線段AE D.線段AF12.如圖是將正方體切去一個角后形成的幾何體,則該幾何體的左視圖為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有實根,則=_____.14.分解因式:x3-9x15.已知關(guān)于x的方程1-xx-216.如圖,在中,CM平分交AB于點M,過點M作交AC于點N,且MN平分,若,則BC的長為______.17.如圖,在矩形ABCD中,AB=4,BC=5,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點G,則CG為_____.18.若關(guān)于x的二次函數(shù)y=ax2+a2的最小值為4,則a的值為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在平面直角坐標系中,函數(shù)()的圖象經(jīng)過點(4,1),直線與圖象交于點,與軸交于點.求的值;橫、縱坐標都是整數(shù)的點叫做整點.記圖象在點,之間的部分與線段,,圍成的區(qū)域(不含邊界)為.①當時,直接寫出區(qū)域內(nèi)的整點個數(shù);②若區(qū)域內(nèi)恰有4個整點,結(jié)合函數(shù)圖象,求的取值范圍.20.(6分)某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同.(1)求每件甲種、乙種玩具的進價分別是多少元?(2)商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?21.(6分)“六一”兒童節(jié)前夕,某縣教育局準備給留守兒童贈送一批學習用品,先對紅星小學的留守兒童人數(shù)進行抽樣統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)分別為6名,7名,8名,10名,12名這五種情形,并繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:(1)該校有_____個班級,補全條形統(tǒng)計圖;(2)求該校各班留守兒童人數(shù)數(shù)據(jù)的平均數(shù),眾數(shù)與中位數(shù);(3)若該鎮(zhèn)所有小學共有60個教學班,請根據(jù)樣本數(shù)據(jù),估計該鎮(zhèn)小學生中,共有多少名留守兒童.22.(8分)在銳角△ABC中,邊BC長為18,高AD長為12如圖,矩形EFCH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K,求的值;設(shè)EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關(guān)系式,并求S的最大值.23.(8分)如圖,在東西方向的海岸線MN上有A,B兩港口,海上有一座小島P,漁民每天都乘輪船從A,B兩港口沿AP,BP的路線去小島捕魚作業(yè).已知小島P在A港的北偏東60°方向,在B港的北偏西45°方向,小島P距海岸線MN的距離為30海里.求AP,BP的長(參考數(shù)據(jù):≈1.4,≈1.7,≈2.2);甲、乙兩船分別從A,B兩港口同時出發(fā)去小島P捕魚作業(yè),甲船比乙船晚到小島24分鐘.已知甲船速度是乙船速度的1.2倍,利用(1)中的結(jié)果求甲、乙兩船的速度各是多少海里/時?24.(10分)今年5月,某大型商業(yè)集團隨機抽取所屬的m家商業(yè)連鎖店進行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.評估成績n(分)

評定等級

頻數(shù)

90≤n≤100

A

2

80≤n<90

B

70≤n<80

C

15

n<70

D

6

根據(jù)以上信息解答下列問題:(1)求m的值;(2)在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大?。唬ńY(jié)果用度、分、秒表示)(3)從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求其中至少有一家是A等級的概率.25.(10分)如圖,AC=DC,BC=EC,∠ACD=∠BCE.求證:∠A=∠D.26.(12分)京沈高速鐵路赤峰至喀左段正在建設(shè)中,甲、乙兩個工程隊計劃參與一項工程建設(shè),甲隊單獨施工30天完成該項工程的,這時乙隊加入,兩隊還需同時施工15天,才能完成該項工程.若乙隊單獨施工,需要多少天才能完成該項工程?若甲隊參與該項工程施工的時間不超過36天,則乙隊至少施工多少天才能完成該項工程?27.(12分)在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.(1)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

分別計算四個方程的判別式的值,然后根據(jù)判別式的意義確定正確選項.【詳解】解:A、△=(-2)2-4×(-3)=16>0,方程有兩個不相等的兩個實數(shù)根,所以A選項錯誤;

B、△=(-2)2-4×3=-8<0,方程沒有實數(shù)根,所以B選項正確;

C、△=(-2)2-4×1=0,方程有兩個相等的兩個實數(shù)根,所以C選項錯誤;

D、△=(-2)2-4×(-1)=8>0,方程有兩個不相等的兩個實數(shù)根,所以D選項錯誤.

故選:B.【點睛】本題考查根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:當△>0根時,方程有兩個不相等的兩個實數(shù)根;當△=0時,方程有兩個相等的兩個實數(shù)根;當△<0時,方程無實數(shù)根.2、D【解析】

由二次函數(shù)的解析式可知,當x=1時,所對應的函數(shù)值y=a+b-2,把點(1,0)代入y=ax2+bx-2,a+b-2=0,然后根據(jù)頂點在第三象限,可以判斷出a與b的符號,進而求出t=a-b-2的變化范圍.【詳解】解:∵二次函數(shù)y=ax2+bx-2的頂點在第三象限,且經(jīng)過點(1,0)∴該函數(shù)是開口向上的,a>0

∵y=ax2+bx﹣2過點(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵頂點在第三象限,∴-<0.∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t<0.【點睛】本題考查大小二次函數(shù)的圖像,熟練掌握圖像的性質(zhì)是解題的關(guān)鍵.3、C【解析】

如圖,根據(jù)長方形的性質(zhì)得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等,準確識圖是解題的關(guān)鍵.4、D【解析】

①錯誤.由題意a>1.b>1,c<1,abc<1;

②正確.因為y1=ax2+bx+c(a≠1)圖象與直線y2=mx+n(m≠1)交于A,B兩點,當ax2+bx+c<mx+n時,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集為-3<x<-1;故②正確;

③錯誤.拋物線與x軸的另一個交點是(1,1);

④正確.拋物線y1=ax2+bx+c(a≠1)圖象與直線y=-3只有一個交點,方程ax2+bx+c+3=1有兩個相等的實數(shù)根,故④正確.【詳解】解:∵拋物線開口向上,∴a>1,

∵拋物線交y軸于負半軸,∴c<1,

∵對稱軸在y軸左邊,∴-<1,

∴b>1,

∴abc<1,故①錯誤.

∵y1=ax2+bx+c(a≠1)圖象與直線y2=mx+n(m≠1)交于A,B兩點,

當ax2+bx+c<mx+n時,-3<x<-1;

即不等式ax2+(b-m)x+c-n<1的解集為-3<x<-1;故②正確,

拋物線與x軸的另一個交點是(1,1),故③錯誤,

∵拋物線y1=ax2+bx+c(a≠1)圖象與直線y=-3只有一個交點,

∴方程ax2+bx+c+3=1有兩個相等的實數(shù)根,故④正確.

故選:D.【點睛】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)與不等式,二次函數(shù)與一元二次方程等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,學會利用數(shù)形結(jié)合的思想解決問題.5、B【解析】試題分析:由平移規(guī)律可得將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是(1,5),故選B.考點:點的平移.6、D【解析】

根據(jù)三角形的中位線定理即可得到結(jié)果.【詳解】解:由題意得AB=2DE=20cm,故選D.【點睛】本題考查的是三角形的中位線,解答本題的關(guān)鍵是熟練掌握三角形的中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.7、C【解析】

根據(jù)同底數(shù)冪的除法,底數(shù)不變指數(shù)相減;合并同類項,系數(shù)相加字母和字母的指數(shù)不變;同底數(shù)冪的乘法,底數(shù)不變指數(shù)相加;冪的乘方,底數(shù)不變指數(shù)相乘,對各選項計算后利用排除法求解.【詳解】解:A、2m與3n不是同類項,不能合并,故錯誤;B、m2?m3=m5,故錯誤;C、正確;D、(-m)3=-m3,故錯誤;故選:C.【點睛】本題考查同底數(shù)冪的除法,合并同類項,同底數(shù)冪的乘法,冪的乘方很容易混淆,一定要記準法則才能做題.8、C【解析】

根據(jù)等邊三角形的性質(zhì)可得出∠B=∠C=60°,由等角的補角相等可得出∠BAP=∠CPD,進而即可證出△ABP∽△PCD,根據(jù)相似三角形的性質(zhì)即可得出y=-x2+x,對照四個選項即可得出.【詳解】∵△ABC為等邊三角形,

∴∠B=∠C=60°,BC=AB=a,PC=a-x.

∵∠APD=60°,∠B=60°,

∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,

∴∠BAP=∠CPD,

∴△ABP∽△PCD,∴,即,∴y=-x2+x.故選C.【點睛】考查了動點問題的函數(shù)圖象、相似三角形的判定與性質(zhì),利用相似三角形的性質(zhì)找出y=-x2+x是解題的關(guān)鍵.9、C【解析】

利用多邊形的內(nèi)角和公式列方程求解即可【詳解】設(shè)這個多邊形的邊數(shù)為n.由題意得:(n﹣2)×180°=4×180°.解得:n=1.答:這個多邊形的邊數(shù)為1.故選C.【點睛】本題主要考查的是多邊形的內(nèi)角和公式,掌握多邊形的內(nèi)角和公式是解題的關(guān)鍵.10、B【解析】【分析】根據(jù)小剛行駛的路程與時間的關(guān)系,確定出圖象即可.【詳解】小剛從家到學校,先勻速步行到車站,因此S隨時間t的增長而增長,等了幾分鐘后坐上了公交車,因此時間在增加,S不增長,坐上了公交車,公交車沿著公路勻速行駛一段時間后到達學校,因此S又隨時間t的增長而增長,故選B.【點睛】本題考查了函數(shù)的圖象,認真分析,理解題意,確定出函數(shù)圖象是解題的關(guān)鍵.11、B【解析】

根據(jù)三角形一邊的中點與此邊所對頂點的連線叫做三角形的中線逐一判斷即可得.【詳解】根據(jù)三角形中線的定義知:線段AD是△ABC的中線.故選B.【點睛】本題考查了三角形的中線,解題的關(guān)鍵是掌握三角形一邊的中點與此邊所對頂點的連線叫做三角形的中線.12、C【解析】看到的棱用實線體現(xiàn).故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

因為方程有實根,所以△≥0,配方整理得(a+2b)2+(a﹣1)2≤0,再利用非負性求出a,b的值即可.【詳解】∵方程有實根,∴△≥0,即△=4(1+a)2﹣4(3a2+4ab+4b2+2)≥0,化簡得:2a2+4ab+4b2﹣2a+1≤0,∴(a+2b)2+(a﹣1)2≤0,而(a+2b)2+(a﹣1)2≥0,∴a+2b=0,a﹣1=0,解得a=1,b=﹣,∴=﹣.故答案為﹣.14、x【解析】試題分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式。因此,先提取公因式x后繼續(xù)應用平方差公式分解即可:x215、k≠1【解析】試題分析:因為1-xx-2+2=k2-x,所以1-x+2(x-2)=-k,所以1-x+2x-4=-k,所以x=3-k,所以x=3-k,因為原方程有解,所以考點:分式方程.16、1【解析】

根據(jù)題意,可以求得∠B的度數(shù),然后根據(jù)解直角三角形的知識可以求得NC的長,從而可以求得BC的長.【詳解】∵在Rt△ABC中,CM平分∠ACB交AB于點M,過點M作MN∥BC交AC于點N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案為1.【點睛】本題考查含30°角的直角三角形、平行線的性質(zhì)、等腰三角形的判定與性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.17、【解析】

如圖,作輔助線,首先證明△EFG≌△ECG,得到FG=CG(設(shè)為x),∠FEG=∠CEG;同理可證AF=AD=5,∠FEA=∠DEA,進而證明△AEG為直角三角形,運用相似三角形的性質(zhì)即可解決問題.【詳解】連接EG;∵四邊形ABCD為矩形,∴∠D=∠C=90°,DC=AB=4;由題意得:EF=DE=EC=2,∠EFG=∠D=90°;在Rt△EFG與Rt△ECG中,,∴Rt△EFG≌Rt△ECG(HL),∴FG=CG(設(shè)為x),∠FEG=∠CEG;同理可證:AF=AD=5,∠FEA=∠DEA,∴∠AEG=×180°=90°,而EF⊥AG,可得△EFG∽△AFE,∴∴22=5?x,∴x=,∴CG=,故答案為:.【點睛】此題考查矩形的性質(zhì),翻折變換的性質(zhì),以考查全等三角形的性質(zhì)及其應用、射影定理等幾何知識點為核心構(gòu)造而成;對綜合的分析問題解決問題的能力提出了一定的要求.18、1.【解析】

根據(jù)二次函數(shù)的性質(zhì)列出不等式和等式,計算即可.【詳解】解:∵關(guān)于x的二次函數(shù)y=ax1+a1的最小值為4,

∴a1=4,a>0,

解得,a=1,

故答案為1.【點睛】本題考查的是二次函數(shù)的最值問題,掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)4;(2)①3個.(1,0),(2,0),(3,0).②或.【解析】分析:(1)根據(jù)點(4,1)在()的圖象上,即可求出的值;(2)①當時,根據(jù)整點的概念,直接寫出區(qū)域內(nèi)的整點個數(shù)即可.②分.當直線過(4,0)時,.當直線過(5,0)時,.當直線過(1,2)時,.當直線過(1,3)時四種情況進行討論即可.詳解:(1)解:∵點(4,1)在()的圖象上.∴,∴.(2)①3個.(1,0),(2,0),(3,0).②.當直線過(4,0)時:,解得.當直線過(5,0)時:,解得.當直線過(1,2)時:,解得.當直線過(1,3)時:,解得∴綜上所述:或.點睛:屬于反比例函數(shù)和一次函數(shù)的綜合題,考查待定系數(shù)法求反比例函數(shù)解析式,一次函數(shù)的圖象與性質(zhì),掌握整點的概念是解題的關(guān)鍵,注意分類討論思想在解題中的應用.20、(1)甲,乙兩種玩具分別是15元/件,1元/件;(2)4.【解析】試題分析:(1)設(shè)甲種玩具進價x元/件,則乙種玩具進價為(40﹣x)元/件,根據(jù)已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同可列方程求解.(2)設(shè)購進甲種玩具y件,則購進乙種玩具(48﹣y)件,根據(jù)甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,可列出不等式組求解.試題解析:設(shè)甲種玩具進價x元/件,則乙種玩具進價為(40﹣x)元/件,x=15,經(jīng)檢驗x=15是原方程的解.∴40﹣x=1.甲,乙兩種玩具分別是15元/件,1元/件;(2)設(shè)購進甲種玩具y件,則購進乙種玩具(48﹣y)件,,解得20≤y<2.因為y是整數(shù),甲種玩具的件數(shù)少于乙種玩具的件數(shù),∴y取20,21,22,23,共有4種方案.考點:分式方程的應用;一元一次不等式組的應用.21、(1)16;(2)平均數(shù)是3,眾數(shù)是10,中位數(shù)是3;(3)1.【解析】

(1)根據(jù)有7名留守兒童班級有2個,所占的百分比是2.5%,即可求得班級的總個數(shù),再求出有8名留守兒童班級的個數(shù),進而補全條形統(tǒng)計圖;(2)將這組數(shù)據(jù)按照從小到大排列即可求得統(tǒng)計的這組留守兒童人數(shù)數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)利用班級數(shù)60乘以(2)中求得的平均數(shù)即可.【詳解】解:(1)該校的班級數(shù)是:2÷2.5%=16(個).則人數(shù)是8名的班級數(shù)是:16﹣1﹣2﹣6﹣2=5(個).條形統(tǒng)計圖補充如下圖所示:故答案為16;(2)每班的留守兒童的平均數(shù)是:(1×6+2×7+5×8+6×10+2×2)÷16=3將這組數(shù)據(jù)按照從小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.故這組數(shù)據(jù)的眾數(shù)是10,中位數(shù)是(8+10)÷2=3.即統(tǒng)計的這組留守兒童人數(shù)數(shù)據(jù)的平均數(shù)是3,眾數(shù)是10,中位數(shù)是3;(3)該鎮(zhèn)小學生中,共有留守兒童60×3=1(名).答:該鎮(zhèn)小學生中共有留守兒童1名.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.也考查了平均數(shù)、中位數(shù)和眾數(shù)以及用樣本估計總體.22、(1);(2)1.【解析】

(1)根據(jù)相似三角形的對應線段(對應中線、對應角平分線、對應邊上的高)的比也等于相似比進行計算即可;(2)根據(jù)EH=KD=x,得出AK=12﹣x,EF=(12﹣x),再根據(jù)S=x(12﹣x)=﹣(x﹣6)2+1,可得當x=6時,S有最大值為1.【詳解】解:(1)∵△AEF∽△ABC,∴,∵邊BC長為18,高AD長為12,∴=;(2)∵EH=KD=x,∴AK=12﹣x,EF=(12﹣x),∴S=x(12﹣x)=﹣(x﹣6)2+1.當x=6時,S有最大值為1.【點睛】本題主要考查了相似三角形的判定與性質(zhì)的綜合應用,解題時注意:確定一個二次函數(shù)的最值,首先看自變量的取值范圍,當自變量取全體實數(shù)時,其最值為拋物線頂點坐標的縱坐標.23、(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/時,乙船的速度是20海里/時【解析】

(1)過點P作PE⊥AB于點E,則有PE=30海里,由題意,可知∠PAB=30°,∠PBA=45°,從而可得AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的長;(2)設(shè)乙船的速度是x海里/時,則甲船的速度是1.2x海里/時,根據(jù)甲船比乙船晚到小島24分鐘列出分式方程,求解后進行檢驗即可得.【詳解】(1)如圖,過點P作PE⊥MN,垂足為E,由題意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,∵PE=30海里,∴AP=60海里,∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE=45°,∴PE=EB=30海里,在Rt△PEB中,BP==30≈42海里,故AP=60海里,BP=42(海里);(2)設(shè)乙船的速度是x海里/時,則甲船的速度是1.2x海里/時,根據(jù)題意,得,解得x=20,經(jīng)檢驗,x=20是原方程的解,甲船的速度為1.2x=1.2×20=24(海里/時).,答:甲船的速度是24海里/時,乙船的速度是20海里/時.【點睛】本題考查了勾股定理的應用,分式方程的應用,含30度角的直角三角形的性質(zhì),等腰直角三角形的判定與性質(zhì),熟練掌握各相關(guān)知識是解題的關(guān)鍵.24、(1)25;(2)8°48′;(3)56【解析】試題分析:(1)由C等級頻數(shù)為15除以C等級所占的百分比60%,即可求得m的值;(2)首先求得B等級的頻數(shù),繼而求得B等級所在扇形的圓心角的大??;(3)首先根據(jù)題意畫出樹狀圖,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論