第2課時-利用“角邊角”“角角邊”說課講解_第1頁
第2課時-利用“角邊角”“角角邊”說課講解_第2頁
第2課時-利用“角邊角”“角角邊”說課講解_第3頁
第2課時-利用“角邊角”“角角邊”說課講解_第4頁
第2課時-利用“角邊角”“角角邊”說課講解_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

3探索三角形全等的條件導(dǎo)入新課講授新課當堂練習(xí)課堂小結(jié)七年級數(shù)學(xué)下(BS)教學(xué)課件第四章三角形第2課時利用“角邊角”“角角邊”判定三角形全等情境引入學(xué)習(xí)目標1.探索并正確理解三角形全等的判定方法“ASA”和“AAS”.2.會用三角形全等的判定方法“ASA”和“AAS”證明兩個三角形全等.講授新課三角形全等的判定(“角邊角”)一問題:如果已知一個三角形的兩角及一邊,那么有幾種可能的情況呢?ABCABC圖一圖二“兩角及夾邊”“兩角和其中一角的對邊”它們能判定兩個三角形全等嗎?作圖探究先任意畫出一個△ABC,再畫一個△A′B′C′,

使A′B′=AB,∠A

′=∠A,∠B′=∠B

(即使兩角和它們的夾邊對應(yīng)相等).把畫好的△A′B′C′剪下,放到△ABC上,它們?nèi)葐??ACBACBA′B′C′ED作法:(1)畫A'B'=AB;(2)在A'B'的同旁畫∠DA'B'=∠A,∠EB'A'=∠B,A'D,B'E相交于點C'.想一想:從中你能發(fā)現(xiàn)什么規(guī)律?知識要點

“角邊角”判定方法文字語言:有兩角和它們夾邊對應(yīng)相等的兩個三角形全等(簡寫成“角邊角”或“ASA”).幾何語言:∠A=∠A′(已知),AB=A′B′(已知),∠B=∠B′(已知),在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(ASA).ABCA′B′C′例1

已知:∠ABC=∠DCB,∠ACB=∠DBC,試說明:△ABC≌△DCB.∠ABC=∠DCB(已知),

BC=CB(公共邊),∠ACB=∠DBC(已知),解:在△ABC和△DCB中,∴△ABC≌△DCB(ASA).典例精析BCAD

判定方法:兩角和它們的夾邊對應(yīng)相等兩個三角形全等.例2

如圖,點D在AB上,點E在AC上,AB=AC,∠B=∠C,試說明:AD=AE.ABCDE分析:證明△ACD≌△ABE,就可以得出AD=AE.解:在△ACD和△ABE中,∠A=∠A(公共角),AC=AB(已知),∠C=∠B

(已知),∴△ACD≌△ABE(ASA),∴AD=AE.問題:若三角形的兩個內(nèi)角分別是60°和45°,且45°所對的邊為3cm,你能畫出這個三角形嗎?60°45°用“角角邊”判定三角形全等二合作探究60°45°思考:

這里的條件與1中的條件有什么相同點與不同點?你能將它轉(zhuǎn)化為1中的條件嗎?75°兩角分別相等且其中一組對角的對邊相等的兩個三角形全等.簡寫成“角角邊”或“AAS”.歸納總結(jié)∠A=∠A′(已知),∠B=∠B′

(已知),AC=A′C′(已知),在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(AAS).ABCA′B′C′例3:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求說明:△ABC≌△DEF.∠B=∠E,

BC=EF,

∠C=∠F.解:在△ABC中,∠A+∠B+∠C=180°.∴△ABC≌△DEF(ASA).∴∠C=180°-∠A-∠B.同理

∠F=180°-∠D-∠E.又∠A=∠D,∠B=∠E,∴∠C=∠F.在△ABC和△DEF中,例4

如圖,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.試說明:(1)△BDA≌△AEC;解:(1)∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°.∵AB⊥AC,∴∠BAD+∠CAE=90°,∠ABD=∠CAE.在△BDA和△AEC中,∠ADB=∠CEA=90°,

∠ABD=∠CAE,AB=AC,∴△BDA≌△AEC(AAS).(2)DE=BD+CE.∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE.解:∵△BDA≌△AEC,方法總結(jié):利用全等三角形可以解決線段之間的關(guān)系,比如線段的相等關(guān)系、和差關(guān)系等,解決問題的關(guān)鍵是運用全等三角形的判定與性質(zhì)進行線段之間的轉(zhuǎn)化.1.△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF,則下列補充的條件中錯誤的是()A.AC=DFB.BC=EFC.∠A=∠DD.∠C=∠F2.在△ABC與△A′B′C′中,已知∠A=44°,∠B=67°,∠C′=69°,∠A′=44°,且AC=A′C′,那么這兩個三角形()A.一定不全等B.一定全等C.不一定全等D.以上都不對當堂練習(xí)AB

3.如圖,已知∠ACB=∠DBC,∠ABC=∠CDB,判別下面的兩個三角形是否全等,并說明理由.不全等,因為BC雖然是公共邊,但不是對應(yīng)邊.ABCDABCDEF4.如圖∠ACB=∠DFE,BC=EF,那么應(yīng)補充一個條件

,才能使△ABC≌△DEF

(寫出一個即可).∠B=∠E或∠A=∠D或

AC=DF(ASA)(AAS)(SAS)AB=DE可以嗎?×AB∥DE5.已知:如圖,AB⊥BC,AD⊥DC,∠1=∠2,

試說明:AB=AD.ACDB12解:∵

AB⊥BC,AD⊥DC,∴∠B=∠D=90°.

在△ABC和△ADC中,∠1=∠2(已知),∠B=∠D(已證),AC=AC(公共邊),∴△ABC≌△ADC(AAS),∴AB=AD.學(xué)以致用:如圖,小明不慎將一塊三角形模具打碎為三塊,他是否可以只帶其中的一塊碎片到商店去,就能配一塊與原來一樣的三角形模具嗎?如果可以,帶哪塊去合適?你能說明其中理由嗎?321答:帶1去,因為有兩角且夾邊相等的兩個三角形全等.能力提升:已知:如圖,△ABC

≌△A′B′C′,AD、A′D′

分別是△ABC

和△A′B′C′的高.試說明AD=A′D′

,并用一句話說出你的發(fā)現(xiàn).ABCDA′B′C′D′解:因為△ABC

≌△A′B′C′,所以AB=A'B'(全等三角形對應(yīng)邊相等),∠ABD=∠A'B'D'(全等三角形對應(yīng)角相等).因為AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'.在△ABD和△A'B'D'中,∠ADB=∠A'D'B'(已證),∠ABD=∠A'B'D'(已證),AB=AB(已證),所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論