版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省南充市廣安市廣安中學(xué)2025年初三下學(xué)期期中聯(lián)考數(shù)學(xué)試題理試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,AB=AC,點D是邊AC上一點,BC=BD=AD,則∠A的大小是().A.36° B.54° C.72° D.30°2.九章算術(shù)是中國古代數(shù)學(xué)專著,九章算術(shù)方程篇中有這樣一道題:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,問幾何步及之?”這是一道行程問題,意思是說:走路快的人走100步的時候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追趕,問走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,設(shè)走路快的人要走
x
步才能追上走路慢的人,那么,下面所列方程正確的是A. B. C. D.3.如圖,△ABC為等腰直角三角形,∠C=90°,點P為△ABC外一點,CP=,BP=3,AP的最大值是()A.+3 B.4 C.5 D.34.小華和小紅到同一家鮮花店購買百合花與玫瑰花,他們購買的數(shù)量如下表所示,小華一共花的錢比小紅少8元,下列說法正確的是()百合花玫瑰花小華6支5支小紅8支3支A.2支百合花比2支玫瑰花多8元B.2支百合花比2支玫瑰花少8元C.14支百合花比8支玫瑰花多8元D.14支百合花比8支玫瑰花少8元5.如圖,等腰直角三角形位于第一象限,,直角頂點在直線上,其中點的橫坐標(biāo)為,且兩條直角邊,分別平行于軸、軸,若反比例函數(shù)的圖象與有交點,則的取值范圍是().A. B. C. D.6.若一組數(shù)據(jù)1、、2、3、4的平均數(shù)與中位數(shù)相同,則不可能是下列選項中的()A.0 B.2.5 C.3 D.57.已知函數(shù)y=的圖象如圖,當(dāng)x≥﹣1時,y的取值范圍是()A.y<﹣1 B.y≤﹣1 C.y≤﹣1或y>0 D.y<﹣1或y≥08.平面直角坐標(biāo)系內(nèi)一點關(guān)于原點對稱點的坐標(biāo)是()A. B. C. D.9.如果y=++3,那么yx的算術(shù)平方根是()A.2 B.3 C.9 D.±310.如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為()(精確到0.1米,參考數(shù)據(jù):)A.30.6米 B.32.1米 C.37.9米 D.39.4米二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直線m∥n,△ABC為等腰直角三角形,∠BAC=90°,則∠1=度.12.如圖,已知正方形邊長為4,以A為圓心,AB為半徑作弧BD,M是BC的中點,過點M作EM⊥BC交弧BD于點E,則弧BE的長為_____.13.在平面直角坐標(biāo)系中,點O為原點,平行于x軸的直線與拋物線L:y=ax1相交于A,B兩點(點B在第一象限),點C在AB的延長線上.(1)已知a=1,點B的縱坐標(biāo)為1.如圖1,向右平移拋物線L使該拋物線過點B,與AB的延長線交于點C,AC的長為__.(1)如圖1,若BC=AB,過O,B,C三點的拋物線L3,頂點為P,開口向下,對應(yīng)函數(shù)的二次項系數(shù)為a3,=__.14.計算(5ab3)2的結(jié)果等于_____.15.若一個正n邊形的每個內(nèi)角為144°,則這個正n邊形的所有對角線的條數(shù)是_________.16.如果小球在如圖所示的地面上自由滾動,并隨機停留在某塊方磚上,每塊方磚大小、質(zhì)地完全一致,那么它最終停留在黑色區(qū)域的概率是__________.三、解答題(共8題,共72分)17.(8分)如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點,過C作CD⊥AB于點D,CD交AE于點F,過C作CG∥AE交BA的延長線于點G.求證:CG是⊙O的切線.求證:AF=CF.若sinG=0.6,CF=4,求GA的長.18.(8分)如圖,AB是⊙O的直徑,弦DE交AB于點F,⊙O的切線BC與AD的延長線交于點C,連接AE.(1)試判斷∠AED與∠C的數(shù)量關(guān)系,并說明理由;(2)若AD=3,∠C=60°,點E是半圓AB的中點,則線段AE的長為.19.(8分)如圖,沿AC方向開山修路.為了加快施工進度,要在小山的另一邊同時施工,從AC上的一點B取∠ABD=120°,BD=520m,∠D=30°.那么另一邊開挖點E離D多遠正好使A,C,E三點在一直線上(取1.732,結(jié)果取整數(shù))?20.(8分)如圖1,菱形ABCD,AB=4,∠ADC=120o,連接對角線AC、BD交于點O,(1)如圖2,將△AOD沿DB平移,使點D與點O重合,求平移后的△A′BO與菱形ABCD重合部分的面積.(2)如圖3,將△A′BO繞點O逆時針旋轉(zhuǎn)交AB于點E′,交BC于點F,①求證:BE′+BF=2,②求出四邊形OE′BF的面積.21.(8分)向陽中學(xué)校園內(nèi)有一條林萌道叫“勤學(xué)路”,道路兩邊有如圖所示的路燈(在鉛垂面內(nèi)的示意圖),燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區(qū)域DE的長為13.3米,從D、E兩處測得路燈A的仰角分別為α和45°,且tanα=1.求燈桿AB的長度.22.(10分)某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元已知乙種商品每件進價比甲種商品每件進價多8元,且購進的甲、乙兩種商品件數(shù)相同.求甲、乙兩種商品的每件進價;該商場將購進的甲、乙兩種商品進行銷售,甲種商品的銷售單價為60元,乙種商品的銷售單價為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價的七折銷售;乙種商品銷售單價保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價至少銷售多少件?23.(12分)6月14日是“世界獻血日”,某市采取自愿報名的方式組織市民義務(wù)獻血.獻血時要對獻血者的血型進行檢測,檢測結(jié)果有“A型”、“B型”、“AB型”、“O型”4種類型.在獻血者人群中,隨機抽取了部分獻血者的血型結(jié)果進行統(tǒng)計,并根據(jù)這個統(tǒng)計結(jié)果制作了兩幅不完整的圖表:血型ABABO人數(shù)105(1)這次隨機抽取的獻血者人數(shù)為人,m=;補全上表中的數(shù)據(jù);若這次活動中該市有3000人義務(wù)獻血,請你根據(jù)抽樣結(jié)果回答:從獻血者人群中任抽取一人,其血型是A型的概率是多少?并估計這3000人中大約有多少人是A型血?24.甲班有45人,乙班有39人.現(xiàn)在需要從甲、乙班各抽調(diào)一些同學(xué)去參加歌詠比賽.如果從甲班抽調(diào)的人數(shù)比乙班多1人,那么甲班剩余人數(shù)恰好是乙班剩余人數(shù)的2倍.請問從甲、乙兩班各抽調(diào)了多少參加歌詠比賽?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
由BD=BC=AD可知,△ABD,△BCD為等腰三角形,設(shè)∠A=∠ABD=x,則∠C=∠CDB=2x,又由AB=AC可知,△ABC為等腰三角形,則∠ABC=∠C=2x.在△ABC中,用內(nèi)角和定理列方程求解.【詳解】解:∵BD=BC=AD,∴△ABD,△BCD為等腰三角形,設(shè)∠A=∠ABD=x,則∠C=∠CDB=2x.又∵AB=AC,∴△ABC為等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故選A.本題考查了等腰三角形的性質(zhì).關(guān)鍵是利用等腰三角形的底角相等,外角的性質(zhì),內(nèi)角和定理,列方程求解.2、B【解析】解:設(shè)走路快的人要走x步才能追上走路慢的人,根據(jù)題意得:.故選B.點睛:本題考查了一元一次方程的應(yīng)用.找準(zhǔn)等量關(guān)系,列方程是關(guān)鍵.3、C【解析】
過點C作,且CQ=CP,連接AQ,PQ,證明≌根據(jù)全等三角形的性質(zhì),得到根據(jù)等腰直角三角形的性質(zhì)求出PQ的長度,進而根據(jù),即可解決問題.【詳解】過點C作,且CQ=CP,連接AQ,PQ,在和中≌AP的最大值是5.故選:C.考查全等三角形的判定與性質(zhì),三角形的三邊關(guān)系,作出輔助線是解題的關(guān)鍵.4、A【解析】
設(shè)每支百合花x元,每支玫瑰花y元,根據(jù)總價=單價×購買數(shù)量結(jié)合小華一共花的錢比小紅少8元,即可得出關(guān)于x、y的二元一次方程,整理后即可得出結(jié)論.【詳解】設(shè)每支百合花x元,每支玫瑰花y元,根據(jù)題意得:8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,∴2支百合花比2支玫瑰花多8元.故選:A.考查了二元一次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程是解題的關(guān)鍵.5、D【解析】設(shè)直線y=x與BC交于E點,分別過A、E兩點作x軸的垂線,垂足為D、F,則A(1,1),而AB=AC=2,則B(3,1),△ABC為等腰直角三角形,E為BC的中點,由中點坐標(biāo)公式求E點坐標(biāo),當(dāng)雙曲線與△ABC有唯一交點時,這個交點分別為A、E,由此可求出k的取值范圍.解:∵,..又∵過點,交于點,∴,∴,∴.故選D.6、C【解析】
解:這組數(shù)據(jù)1、a、2、1、4的平均數(shù)為:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)將這組數(shù)據(jù)從小到大的順序排列后為a,1,2,1,4,中位數(shù)是2,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=2,解得a=0,符合排列順序.(2)將這組數(shù)據(jù)從小到大的順序排列后為1,a,2,1,4,中位數(shù)是2,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=2,解得a=0,不符合排列順序.(1)將這組數(shù)據(jù)從小到大的順序排列后1,2,a,1,4,中位數(shù)是a,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=a,解得a=2.5,符合排列順序.(4)將這組數(shù)據(jù)從小到大的順序排列后為1,2,1,a,4,中位數(shù)是1,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=1,解得a=5,不符合排列順序.(5)將這組數(shù)據(jù)從小到大的順序排列為1,2,1,4,a,中位數(shù)是1,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=1,解得a=5;符合排列順序;綜上,可得:a=0、2.5或5,∴a不可能是1.故選C.本題考查中位數(shù);算術(shù)平均數(shù).7、C【解析】試題分析:根據(jù)反比例函數(shù)的性質(zhì),再結(jié)合函數(shù)的圖象即可解答本題.解:根據(jù)反比例函數(shù)的性質(zhì)和圖象顯示可知:此函數(shù)為減函數(shù),x≥-1時,在第三象限內(nèi)y的取值范圍是y≤-1;在第一象限內(nèi)y的取值范圍是y>1.故選C.考點:本題考查了反比例函數(shù)的性質(zhì)點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要注意分析反比例函數(shù)的基本性質(zhì)和知識,反比例函數(shù)y=的圖象是雙曲線,當(dāng)k>1時,圖象在一、三象限,在每個象限內(nèi)y隨x的增大而減小;當(dāng)k<1時,圖象在二、四象限,在每個象限內(nèi),y隨x的增大而增大8、D【解析】
根據(jù)“平面直角坐標(biāo)系中任意一點P(x,y),關(guān)于原點的對稱點是(-x,-y),即關(guān)于原點的對稱點,橫縱坐標(biāo)都變成相反數(shù)”解答.【詳解】解:根據(jù)關(guān)于原點對稱的點的坐標(biāo)的特點,∴點A(-2,3)關(guān)于原點對稱的點的坐標(biāo)是(2,-3),故選D.本題主要考查點關(guān)于原點對稱的特征,解決本題的關(guān)鍵是要熟練掌握點關(guān)于原點對稱的特征.9、B【解析】解:由題意得:x﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,則yx=9,9的算術(shù)平方根是1.故選B.10、D【解析】解:延長AB交DC于H,作EG⊥AB于G,如圖所示,則GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,設(shè)BH=x米,則CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】試題分析:∵△ABC為等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m∥n,∴∠1=1°;故答案為1.考點:等腰直角三角形;平行線的性質(zhì).12、【解析】
延長ME交AD于F,由M是BC的中點,MF⊥AD,得到F點為AD的中點,即AF=AD,則∠AEF=30°,得到∠BAE=30°,再利用弧長公式計算出弧BE的長.【詳解】延長ME交AD于F,如圖,∵M是BC的中點,MF⊥AD,∴F點為AD的中點,即AF=AD.又∵AE=AD,∴AE=2AF,∴∠AEF=30°,∴∠BAE=30°,∴弧BE的長==.故答案為.本題考查了弧長公式:l=.也考查了在直角三角形中,一直角邊是斜邊的一半,這條直角邊所對的角為30度.13、4﹣【解析】解:(1)當(dāng)a=1時,拋物線L的解析式為:y=x1,當(dāng)y=1時,1=x1,∴x=±,∵B在第一象限,∴A(﹣,1),B(,1),∴AB=1,∵向右平移拋物線L使該拋物線過點B,∴AB=BC=1,∴AC=4;(1)如圖1,設(shè)拋物線L3與x軸的交點為G,其對稱軸與x軸交于Q,過B作BK⊥x軸于K,設(shè)OK=t,則AB=BC=1t,∴B(t,at1),根據(jù)拋物線的對稱性得:OQ=1t,OG=1OQ=4t,∴O(0,0),G(4t,0),設(shè)拋物線L3的解析式為:y=a3(x﹣0)(x﹣4t),y=a3x(x﹣4t),∵該拋物線過點B(t,at1),∴at1=a3t(t﹣4t),∵t≠0,∴a=﹣3a3,∴=﹣,故答案為(1)4;(1)﹣.點睛:本題考查二次函數(shù)的圖象和性質(zhì).熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.14、25a2b1.【解析】
代數(shù)式內(nèi)每項因式均平方即可.【詳解】解:原式=25a2b1.本題考查了代數(shù)式的乘方.15、2【解析】
由正n邊形的每個內(nèi)角為144°結(jié)合多邊形內(nèi)角和公式,即可得出關(guān)于n的一元一次方程,解方程即可求出n的值,將其代入中即可得出結(jié)論.【詳解】∵一個正n邊形的每個內(nèi)角為144°,
∴144n=180×(n-2),解得:n=1.
這個正n邊形的所有對角線的條數(shù)是:==2.
故答案為2.本題考查了多邊形的內(nèi)角以及多邊形的對角線,解題的關(guān)鍵是求出正n邊形的邊數(shù).本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)多邊形的內(nèi)角和公式求出多邊形邊的條數(shù)是關(guān)鍵.16、.【解析】
先求出黑色方磚在整個地面中所占的比值,再根據(jù)其比值即可得出結(jié)論.【詳解】解:∵由圖可知,黑色方磚4塊,共有16塊方磚,∴黑色方磚在整個區(qū)域中所占的比值∴它停在黑色區(qū)域的概率是;故答案為.本題考查了概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.三、解答題(共8題,共72分)17、(1)見解析;(2)見解析;(3)AG=1.【解析】
(1)利用垂徑定理、平行的性質(zhì),得出OC⊥CG,得證CG是⊙O的切線.(2)利用直徑所對圓周角為和垂直的條件得出∠2=∠B,再根據(jù)等弧所對的圓周角相等得出∠1=∠B,進而證得∠1=∠2,得證AF=CF.(3)根據(jù)直角三角形的性質(zhì),求出AD的長度,再利用平行的性質(zhì)計算出結(jié)果.【詳解】(1)證明:連結(jié)OC,如圖,∵C是劣弧AE的中點,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切線;(2)證明:連結(jié)AC、BC,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵C是劣弧AE的中點,∴,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:∵CG∥AE,∴∠FAD=∠G,∵sinG=0.6,∴sin∠FAD==0.6,∵∠CDA=90°,AF=CF=4,∴DF=2.4,∴AD=3.2,∴CD=CF+DF=6.4,∵AF∥CG,∴,∴∴DG=,∴AG=DG﹣AD=1.本題主要考查與圓有關(guān)的位置關(guān)系和圓中的計算問題,掌握切線的判定定理以及解直角三角形是解題的關(guān)鍵.18、(1)∠AED=∠C,理由見解析;(2)【解析】
(1)根據(jù)切線的性質(zhì)和圓周角定理解答即可;(2)根據(jù)勾股定理和三角函數(shù)進行解答即可.【詳解】(1)∠AED=∠C,證明如下:連接BD,可得∠ADB=90°,∴∠C+∠DBC=90°,∵CB是⊙O的切線,∴∠CBA=90°,∴∠ABD+∠DBC=90°,∴∠ABD=∠C,∵∠AEB=∠ABD,∴∠AED=∠C,(2)連接BE,∴∠AEB=90°,∵∠C=60°,∴∠CAB=30°,在Rt△DAB中,AD=3,∠ADB=90°,∴cos∠DAB=,解得:AB=2,∵E是半圓AB的中點,∴AE=BE,∵∠AEB=90°,∴∠BAE=45°,在Rt△AEB中,AB=2,∠ADB=90°,∴cos∠EAB=,解得:AE=.故答案為此題考查了切線的性質(zhì)、直角三角形的性質(zhì)以及圓周角定理.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意掌握輔助線的作法.19、450m.【解析】
若要使A、C、E三點共線,則三角形BDE是以∠E為直角的三角形,利用三角函數(shù)即可解得DE的長.【詳解】解:,,,在中,,,,.答:另一邊開挖點離,正好使,,三點在一直線上.本題考查的知識點是解直角三角形的應(yīng)用和勾股定理的運用,解題關(guān)鍵是是熟記含30°的直角三角形的性質(zhì).20、(1);(2)①2,②【解析】分析:(1)重合部分是等邊三角形,計算出邊長即可.①證明:在圖3中,取AB中點E,證明≌,即可得到,②由①知,在旋轉(zhuǎn)過程60°中始終有≌四邊形的面積等于=.詳解:(1)∵四邊形為菱形,∴∴為等邊三角形∴∵AD//∴∴為等邊三角形,邊長∴重合部分的面積:①證明:在圖3中,取AB中點E,由上題知,∴又∵∴≌,∴∴,②由①知,在旋轉(zhuǎn)過程60°中始終有≌∴四邊形的面積等于=.點睛:屬于四邊形的綜合題,考查了菱形的性質(zhì),全等三角形的判定與性質(zhì)等,熟練掌握每個知識點是解題的關(guān)鍵.21、燈桿AB的長度為2.3米.【解析】
過點A作AF⊥CE,交CE于點F,過點B作BG⊥AF,交AF于點G,則FG=BC=2.設(shè)AF=x知EF=AF=x、DF==,由DE=13.3求得x=11.4,據(jù)此知AG=AF﹣GF=1.4,再求得∠ABG=∠ABC﹣∠CBG=30°可得AB=2AG=2.3.【詳解】過點A作AF⊥CE,交CE于點F,過點B作BG⊥AF,交AF于點G,則FG=BC=2.由題意得:∠ADE=α,∠E=45°.設(shè)AF=x.∵∠E=45°,∴EF=AF=x.在Rt△ADF中,∵tan∠ADF=,∴DF==.∵DE=13.3,∴x+=13.3,∴x=11.4,∴AG=AF﹣GF=11.4﹣2=1.4.∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°,∴AB=2AG=2.3.答:燈桿AB的長度為2.3米.本題主要考查解直角三角形﹣仰角俯角問題,解題的關(guān)鍵是結(jié)合題意構(gòu)建直角三角形并熟練掌握三角函數(shù)的定義及其應(yīng)用能力.22、甲種商品的每件進價為40元,乙種商品的每件進價為48元;甲種商品按原銷售單價至少銷售20件.【解析】【分析】設(shè)甲種商品的每件進價為x元,乙種商品的每件進價為(x+8))元根據(jù)“某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元購進的甲、乙兩種商品件數(shù)相同”列出方程進行求解即可;設(shè)甲種商品按原銷售單價銷售a件,則由“兩種商品全部售完后共獲利不少于2460元”列出不等式進行求解即可.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 精準(zhǔn)識別課件教學(xué)課件
- 智慧養(yǎng)老中心解決方案
- 頸椎病解刨結(jié)構(gòu)
- 2024年超高速加工中心投資項目資金申請報告書
- 車場停電應(yīng)急預(yù)案
- 第六章 機械能守恒定律-功能關(guān)系與能量守恒 2025年高考物理基礎(chǔ)專項復(fù)習(xí)
- 2-1-4 微專題1-碳酸鈉與碳酸氫鈉的相關(guān)計算 高一上學(xué)期化學(xué)人教版(2019)必修第一冊
- 骨水泥在糖尿病足的應(yīng)用
- 醫(yī)療器械合作協(xié)議書范本
- 社交網(wǎng)絡(luò)鉤機租賃合同
- 2023年05月重慶市渝北區(qū)洛磧鎮(zhèn)上半年公開招錄8名村專職干部筆試歷年高頻考點試題含答案詳解
- 區(qū)塊鏈技術(shù)與應(yīng)用學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
- 2022年銅仁市國企招聘考試真題及答案
- 手術(shù)室??谱o士培訓(xùn)計劃范文(2篇)
- 中藥材中藥飲片采購管理制度201556
- 我國行政環(huán)境及其對行政管理的影響-畢業(yè)論文
- 大學(xué)生心理健康教育(高職)PPT全套完整教學(xué)課件
- (通橋【2018】8370)《鐵路橋梁快速更換型伸縮縫安裝圖》
- 中華民族精神2023章節(jié)測試答案-中華民族精神超星爾雅答案
- 2023屆高三化學(xué)二輪復(fù)習(xí) 基于思維模型建構(gòu)的信息型無機制備實驗難點突破 利用信息“防”得其所發(fā)言 課件
- 《壽光縣志》山東省壽光縣地方史志編
評論
0/150
提交評論