版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第04講基本不等式及其應(yīng)用目錄TOC\o"1-2"\h\z\u01模擬基礎(chǔ)練 2題型一:基本不等式及其應(yīng)用 2題型二:直接法求最值 4題型三:常規(guī)湊配法求最值 5題型四:化為單變量法 6題型五:雙換元求最值 7題型六:“1”的代換求最值 8題型七:齊次化求最值 9題型八:利用基本不等式證明不等式 10題型九:利用基本不等式解決實際問題 12題型十:與a+b、平方和、ab有關(guān)問題的最值 15題型十一:三角換元法 18題型十二:多次運用基本不等式 21題型十三:待定系數(shù)法 22題型十四:多元均值不等式 23題型十五:萬能K法 23題型十六:與基本不等式有關(guān)的恒(能)成立問題 25題型十七:基本不等式與其他知識交匯的最值問題 26題型十八:整體配湊法 2702重難創(chuàng)新練 28真題實戰(zhàn)練 36題型一:基本不等式及其應(yīng)用1.(2024·高三·安徽蕪湖·期末)《幾何原本》第二卷中的幾何代數(shù)法(以幾何方法研究代數(shù)問題)成了后世西方數(shù)學(xué)家處理問題的重要依據(jù),通過這一原理,很多代數(shù)的定理都能夠通過圖形實現(xiàn)證明,并稱之為無字證明.現(xiàn)有如圖所示的圖形,點SKIPIF1<0在半圓SKIPIF1<0上,且SKIPIF1<0,點SKIPIF1<0在直徑SKIPIF1<0上運動.作SKIPIF1<0交半圓SKIPIF1<0于點SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,則由SKIPIF1<0可以直接證明的不等式為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】連接SKIPIF1<0,由題知SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0所以由SKIPIF1<0可以證明SKIPIF1<0故選:D2.下列運用基本不等式求最值,使用正確的個數(shù)是(
)SKIPIF1<0已知SKIPIF1<0,求SKIPIF1<0的最小值;解答過程:SKIPIF1<0;SKIPIF1<0求函數(shù)SKIPIF1<0的最小值;解答過程:可化得SKIPIF1<0;SKIPIF1<0設(shè)SKIPIF1<0,求SKIPIF1<0的最小值;解答過程:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時等號成立,把SKIPIF1<0代入SKIPIF1<0得最小值為4.A.0個 B.1個 C.2個 D.3個【答案】A【解析】對SKIPIF1<0:基本不等式適用于兩個正數(shù),當(dāng)SKIPIF1<0,SKIPIF1<0均為負(fù)值,此時SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,故SKIPIF1<0的用法有誤,故SKIPIF1<0錯誤;對SKIPIF1<0:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,但SKIPIF1<0,則等號取不到,故SKIPIF1<0的用法有誤;對SKIPIF1<0:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,故SKIPIF1<0的用法有誤;故使用正確的個數(shù)是0個,故選:SKIPIF1<0.3.下列不等式一定成立的是(
)A.SKIPIF1<0SKIPIF1<0 B.SKIPIF1<0SKIPIF1<0C.SKIPIF1<0SKIPIF1<0 D.SKIPIF1<0SKIPIF1<0【答案】C【解析】A:當(dāng)SKIPIF1<0時,有SKIPIF1<0,故不等式不一定成立,故A錯誤;B:當(dāng)SKIPIF1<0,即SKIPIF1<0時,有SKIPIF1<0,故不等式不一定成立,故B錯誤;C:SKIPIF1<0恒成立,故C正確;D:當(dāng)SKIPIF1<0時,有SKIPIF1<0,故不等式不一定成立,故D錯誤;故選:C題型二:直接法求最值4.(2024·上海普陀·二模)若實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.5.(2024·高三·上海青浦·期中)若SKIPIF1<0且滿足SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0時取等號,所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.6.若SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】因為SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,故答案為:SKIPIF1<0題型三:常規(guī)湊配法求最值7.若SKIPIF1<0,則SKIPIF1<0的最小值是.【答案】3【解析】∵SKIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時取等號,∴SKIPIF1<0時SKIPIF1<0取得最小值3.故答案為:3.8.若SKIPIF1<0,則函數(shù)SKIPIF1<0的值域是.【答案】SKIPIF1<0【解析】∵SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號;故函數(shù)的值域為SKIPIF1<0.故答案為:SKIPIF1<0.9.若SKIPIF1<0,則SKIPIF1<0有(
)A.最大值SKIPIF1<0 B.最小值SKIPIF1<0 C.最大值SKIPIF1<0 D.最小值SKIPIF1<0【答案】A【解析】因SKIPIF1<0,則SKIPIF1<0,于是得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取“=”,所以當(dāng)SKIPIF1<0時,SKIPIF1<0有最大值SKIPIF1<0.故選:A題型四:化為單變量法10.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由SKIPIF1<0,SKIPIF1<0,可消去SKIPIF1<0得到SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0的最大值為SKIPIF1<0.故選:C.11.(2024·高三·河南漯河·期末)設(shè)正實數(shù)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因為正實數(shù)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即當(dāng)SKIPIF1<0時,等號成立,故SKIPIF1<0的最大值為SKIPIF1<0.故選:D.12.已知正數(shù)x,y滿足SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】12【解析】由SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,代入SKIPIF1<0中,可得SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時,取等號,所以SKIPIF1<0的最小值為12.故答案為:12.13.已知SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】由SKIPIF1<0,且SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,可得SKIPIF1<0且SKIPIF1<0,可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即SKIPIF1<0時,等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.題型五:雙換元求最值14.(2024·全國·模擬預(yù)測)已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】12【解析】令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時,等號成立.故答案為:1215.(2024·高三·福建龍巖·期中)已知SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】8【解析】由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立.故答案為:8題型六:“1”的代換求最值16.(2024·高三·江蘇南京·開學(xué)考試)函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖象恒過定點A,若點A在直線SKIPIF1<0上,其中SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】5【解析】對于函數(shù)SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,可知SKIPIF1<0,若點SKIPIF1<0在直線SKIPIF1<0上,則SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立,所以SKIPIF1<0的最小值為5.故答案為:5.17.(2024·四川南充·二模)已知x,y是實數(shù),SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為【答案】1【解析】因為SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,取到等號,所以SKIPIF1<0,即SKIPIF1<0的最小值為1.故答案為:118.(2024·陜西西安·模擬預(yù)測)若直線SKIPIF1<0過函數(shù)SKIPIF1<0,且SKIPIF1<0)的定點SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】6【解析】SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0,且SKIPIF1<0的圖象恒過定點SKIPIF1<0,SKIPIF1<0定點SKIPIF1<0在直線SKIPIF1<0上,SKIPIF1<0SKIPIF1<0SKIPIF1<0,由SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號.即當(dāng)且僅當(dāng)SKIPIF1<0時,SKIPIF1<0取得最小值為SKIPIF1<0.故答案為:6.19.(2024·上海徐匯·二模)若正數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0/SKIPIF1<0【解析】由已知SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,故所求最小值是SKIPIF1<0.故答案為:SKIPIF1<0.題型七:齊次化求最值20.(2024·高三·浙江·開學(xué)考試)已知正實數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0/SKIPIF1<0【解析】正實數(shù)SKIPIF1<0滿足SKIPIF1<0,有SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<021.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即有SKIPIF1<0且SKIPIF1<0,將SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,所以SKIPIF1<0SKIPIF1<0的最小值SKIPIF1<0,即SKIPIF1<0的最小值是SKIPIF1<0.故選:D.題型八:利用基本不等式證明不等式22.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為正數(shù),函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的最小值;(2)若SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不全相等,求證:SKIPIF1<0.【解析】(1)由題意得SKIPIF1<0,∴SKIPIF1<0,∴當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0取得最小值4.(2)∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為正數(shù),且SKIPIF1<0,∴SKIPIF1<0,∴要證SKIPIF1<0,即證SKIPIF1<0.∵SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號.又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不全相等,∴SKIPIF1<0,即SKIPIF1<0.23.不等式選講已知SKIPIF1<0均為正實數(shù),函數(shù)SKIPIF1<0的最小值為4.(1)求證:SKIPIF1<0;(2)求證:SKIPIF1<0.【解析】(1)SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,SKIPIF1<0,要證SKIPIF1<0,只要證SKIPIF1<0,由柯西不等式得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,SKIPIF1<0.(2)由基本不等式得SKIPIF1<0,以上三式當(dāng)且僅當(dāng)SKIPIF1<0時同時取等號,將以上三式相加得SKIPIF1<0,即SKIPIF1<0.24.(2024·四川資陽·模擬預(yù)測)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0的最小值;(2)證明:SKIPIF1<0.【解析】(1)(2)因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,則SKIPIF1<0,即SKIPIF1<0的最小值是2.(2)證明:因為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,所以SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立則SKIPIF1<0,即SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立.題型九:利用基本不等式解決實際問題25.(2024·黑龍江·二模)“不以規(guī)矩,不能成方圓”出自《孟子·離婁章句上》.“規(guī)”指圓規(guī),“矩”指由相互垂直的長短兩條直尺構(gòu)成的方尺,是古人用來測量、畫圓和方形圖案的工具,今有一塊圓形木板,按圖中數(shù)據(jù),以“矩”量之,若將這塊圓形木板截成一塊四邊形形狀的木板,且這塊四邊形木板的一個內(nèi)角SKIPIF1<0滿足SKIPIF1<0,則這塊四邊形木板周長的最大值為(
)
A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】因為四邊形木板的一個內(nèi)角SKIPIF1<0滿足SKIPIF1<0,如圖,設(shè)SKIPIF1<0,由題設(shè)可得圓的直徑為SKIPIF1<0,故SKIPIF1<0,因SKIPIF1<0,SKIPIF1<0為三角形內(nèi)角,故SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,同理SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0等號成立,故四邊形周長的最大值為SKIPIF1<0,故選:A.26.(2024·廣東韶關(guān)·二模)在工程中估算平整一塊矩形場地的工程量W(單位:平方米)的計算公式是SKIPIF1<0,在不測量長和寬的情況下,若只知道這塊矩形場地的面積是10000平方米,每平方米收費1元,請估算平整完這塊場地所需的最少費用(單位:元)是(
)A.10000 B.10480 C.10816 D.10818【答案】C【解析】設(shè)矩形場地的長為SKIPIF1<0米,則寬為SKIPIF1<0米,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立.所以平整這塊場地所需的最少費用為SKIPIF1<0元.故選:C27.(2024·高三·山東濟(jì)寧·開學(xué)考試)一家商店使用一架兩臂不等長的天平稱黃金.一位顧客到店里購買SKIPIF1<0黃金,售貨員現(xiàn)將SKIPIF1<0的砝碼放在天平的左盤中,取出SKIPIF1<0黃金放在天平右盤中使天平平衡;將天平左右盤清空后,再將SKIPIF1<0的砝碼放在天平右盤中,再取出SKIPIF1<0黃金放在天平的左盤中,使天平平衡;最后將兩次稱得的黃金交給顧客.則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.以上都有可能【答案】A【解析】設(shè)天平左臂長為SKIPIF1<0,右臂長為SKIPIF1<0,且SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0.故選:A28.(2024·高三·北京朝陽·期末)根據(jù)經(jīng)濟(jì)學(xué)理論,企業(yè)生產(chǎn)的產(chǎn)量受勞動投入、資本投入和技術(shù)水平的影響,用SKIPIF1<0表示產(chǎn)量,SKIPIF1<0表示勞動投入,SKIPIF1<0表示資本投入,SKIPIF1<0表示技術(shù)水平,則它們的關(guān)系可以表示為SKIPIF1<0,其中SKIPIF1<0.當(dāng)SKIPIF1<0不變,SKIPIF1<0與SKIPIF1<0均變?yōu)樵瓉淼腟KIPIF1<0倍時,下面結(jié)論中正確的是(
)A.存在SKIPIF1<0和SKIPIF1<0,使得SKIPIF1<0不變B.存在SKIPIF1<0和SKIPIF1<0,使得SKIPIF1<0變?yōu)樵瓉淼腟KIPIF1<0倍C.若SKIPIF1<0,則SKIPIF1<0最多可變?yōu)樵瓉淼腟KIPIF1<0倍D.若SKIPIF1<0,則SKIPIF1<0最多可變?yōu)樵瓉淼腟KIPIF1<0倍【答案】D【解析】設(shè)當(dāng)SKIPIF1<0不變,SKIPIF1<0與SKIPIF1<0均變?yōu)樵瓉淼腟KIPIF1<0倍時,SKIPIF1<0,對于A,若SKIPIF1<0,則SKIPIF1<0,故A錯誤;對于B,若SKIPIF1<0和SKIPIF1<0,則SKIPIF1<0,故B錯誤;對于C,若SKIPIF1<0,則SKIPIF1<0,即若SKIPIF1<0,故C錯誤;對于D,若SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,故D正確.故選:D.29.某合作社需要分裝一批蔬菜.已知這批蔬菜只由一名男社員分裝時,需要12天完成,只由一名女社員分裝時,需要18天完成.為了讓市民盡快吃到這批蔬菜,要求一天內(nèi)分裝完畢.由于現(xiàn)有的男?女社員人數(shù)都不足以單獨完成任務(wù),所以需要若干名男社員和若干名女社員共同分裝.已知分裝這種蔬菜時會不可避免地造成一些損耗.根據(jù)以往經(jīng)驗,這批蔬菜分裝完畢后,參與任務(wù)的所有男社員會損耗蔬菜共80千克,參與任務(wù)的所有女社員會損耗蔬菜共30千克.則參與分裝蔬菜的男社員的平均損耗蔬菜量(千克)與女社員的平均損耗蔬菜量(千克)之和的最小值為(
)A.10 B.15 C.30 D.45【答案】B【解析】設(shè)安排男社員SKIPIF1<0名,女社員SKIPIF1<0名,根據(jù)題意,可得SKIPIF1<0,平均損耗蔬菜量之和為SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,則分裝蔬菜的男社員的平均損耗蔬菜量(千克)與女社員的平均損耗蔬菜量(千克)之和的最小值為15.故選:B.題型十:與a+b、平方和、ab有關(guān)問題的最值30.(多選題)(2024·全國·模擬預(yù)測)若實數(shù)a,b滿足SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【解析】因為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,所以SKIPIF1<0,A正確;因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,B錯誤;因為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,所以SKIPIF1<0,C錯誤;由SKIPIF1<0整理,得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,所以SKIPIF1<0,D正確.故選:AD.31.(多選題)已知位于第一象限的點SKIPIF1<0在曲線SKIPIF1<0上,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BD【解析】由題意可得SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,對A:由SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,故A錯誤;對B:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,即SKIPIF1<0,故B正確;對C:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,故C錯誤;對D:由SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,故D正確.故選:BD.32.(多選題)設(shè)正實數(shù)SKIPIF1<0,SKIPIF1<0,且滿足SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【解析】對于A項,由SKIPIF1<0可得:SKIPIF1<0,因SKIPIF1<0,故SKIPIF1<0,將其代入SKIPIF1<0可得:SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,故A項正確;對于B項,由SKIPIF1<0可得SKIPIF1<0,因SKIPIF1<0,故得:SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,故B項錯誤;對于C項,由SKIPIF1<0,設(shè)SKIPIF1<0,由上分析知,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,即C項錯誤;對于D項,由SKIPIF1<0,由上分析知SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,故D項正確.故選:AD.33.(多選題)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列說法正確的是()A.SKIPIF1<0的最小值為SKIPIF1<0B.SKIPIF1<0的最小值為SKIPIF1<0C.SKIPIF1<0的最小值為SKIPIF1<0D.SKIPIF1<0的最小值為SKIPIF1<0【答案】AD【解析】A選項:SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時等號成立,A選項正確;B選項:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時等號成立,B選項錯誤;C選項:由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,C選項錯誤;D選項:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時等號成立,D選項正確;故選:AD.題型十一:三角換元法34.(多選題)由知實數(shù)a,b滿足SKIPIF1<0,則(
)A.a(chǎn)b的最大值為SKIPIF1<0B.SKIPIF1<0的最大值為SKIPIF1<0C.SKIPIF1<0D.當(dāng)SKIPIF1<0時,SKIPIF1<0的最大值為SKIPIF1<0【答案】AC【解析】對于A中,由不等式SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,所以A正確;對于B中,設(shè)SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,整理得SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0,所以B不正確;對于C中,設(shè)SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,整理得SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0,所以C正確;對于D中,由SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,可得SKIPIF1<0,可得SKIPIF1<0,因為SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,不妨設(shè)SKIPIF1<0,可得SKIPIF1<0則SKIPIF1<0,所以SKIPIF1<0又因為SKIPIF1<0為單調(diào)遞增函數(shù),所以SKIPIF1<0無最大值,所以D不正確.故選:AC.35.(多選題)(2024·全國·模擬預(yù)測)實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則(
)A.SKIPIF1<0B.SKIPIF1<0的最大值為SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0的最大值為SKIPIF1<0【答案】ACD【解析】對于A選項,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取“=”,故A正確;對于B選項,令SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0的最大值為1,所以SKIPIF1<0的最大值SKIPIF1<0,故B錯誤;對于C選項,由B中的分析知,SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故C正確;對于D選項,令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,且SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0取最大SKIPIF1<0,故D正確.故選:ACD.36.(多選題)若SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【解析】因為SKIPIF1<0(SKIPIF1<0R),由SKIPIF1<0可變形為,SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,SKIPIF1<0,故A錯誤,B正確;由SKIPIF1<0可變形為SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,故C正確;因為SKIPIF1<0變形可得SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0SKIPIF1<0,所以當(dāng)SKIPIF1<0時滿足等式,故D正確.故選:BCD.題型十二:多次運用基本不等式37.已知SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】由SKIPIF1<0,可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即SKIPIF1<0時,等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.38.(2024·黑龍江·二模)已知實數(shù)SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0取得最大值時,SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】D【解析】SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,或SKIPIF1<0取等號,所以SKIPIF1<0或SKIPIF1<0.故選:D39.若實數(shù)a,b滿足ab>0,則SKIPIF1<0的最小值為(
)A.8 B.6 C.4 D.2【答案】C【解析】實數(shù)a,b滿足ab>0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0時等號成立.故選:C.40.已知SKIPIF1<0則SKIPIF1<0的最小值為()A.2 B.SKIPIF1<0 C.4 D.5【答案】C【解析】SKIPIF1<0題型十三:待定系數(shù)法41.(云南師范大學(xué)附屬中學(xué)2023-2024學(xué)年高三4月月考數(shù)學(xué)試題)已知實數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不全為0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由題意實數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不全為0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立.故選:D.42.(2024·山西運城·二模)若a,b,c均為正實數(shù),則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】因為a,b均為正實數(shù),則SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0時取等號,則SKIPIF1<0的最大值為SKIPIF1<0.故選:A.題型十四:多元均值不等式43.已知SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】依題意,SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立.故答案為:SKIPIF1<044.函數(shù)SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,由對勾函數(shù)性質(zhì)可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.故選:D.題型十五:萬能K法45.已知實數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值為.【答案】SKIPIF1<0/SKIPIF1<0【解析】原方程可化為SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0的最大值為SKIPIF1<0,故答案為:SKIPIF1<046.(2024·湖南衡陽·模擬預(yù)測)已知實數(shù)SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】令SKIPIF1<0,則SKIPIF1<0,方程SKIPIF1<0可化為SKIPIF1<0,整理得SKIPIF1<0,則滿足SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0.故選:B.47.(2024·高三·重慶·期中)已知x,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最大值為.【答案】SKIPIF1<0/SKIPIF1<0【解析】設(shè)SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,故答案為:SKIPIF1<0.題型十六:與基本不等式有關(guān)的恒(能)成立問題48.(2024·遼寧大連·一模)對于任意的正數(shù)m,n,不等式SKIPIF1<0成立,則λ的最大值為【答案】SKIPIF1<0/SKIPIF1<0【解析】因為SKIPIF1<0都為正數(shù),則不等式SKIPIF1<0成立,即為SKIPIF1<0成立,又由SKIPIF1<0,當(dāng)SKIPIF1<0時,即SKIPIF1<0時,等號成立,所以SKIPIF1<0,即SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.49.(2024·高三·山東濱州·期末)若不等式SKIPIF1<0對任意SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】不等式SKIPIF1<0對任意SKIPIF1<0恒成立,則SKIPIF1<0,SKIPIF1<0成立,而SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,因此SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B50.若兩個正實數(shù)SKIPIF1<0滿足SKIPIF1<0且不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由題設(shè)SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,又SKIPIF1<0恒成立,即SKIPIF1<0.故選:A題型十七:基本不等式與其他知識交匯的最值問題51.已知SKIPIF1<0,向量SKIPIF1<0,則SKIPIF1<0的最大值為.【答案】SKIPIF1<0/0.125【解析】由題意知SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,結(jié)合SKIPIF1<0,即SKIPIF1<0時取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年加盟房地產(chǎn)經(jīng)紀(jì)公司合同
- 老年人特殊保健健身會所會員免責(zé)合同
- 游樂設(shè)施設(shè)計施工合同
- 電力工程設(shè)計與建設(shè)合作合同
- 林業(yè)碳匯項目投資合同
- 資料員承包合同
- 農(nóng)業(yè)產(chǎn)業(yè)鏈優(yōu)化升級合同
- 汽車銷售公司汽車零部件置換與質(zhì)保合同協(xié)議
- 獨立設(shè)計師品牌合作合同
- 管道清洗服務(wù)合同
- 新能源充電站運營手冊
- 2024年蘭州新區(qū)實正鑫熱電有限公司招聘筆試沖刺題(帶答案解析)
- 血透室護(hù)士長述職
- (正式版)JTT 1218.4-2024 城市軌道交通運營設(shè)備維修與更新技術(shù)規(guī)范 第4部分:軌道
- 2024年漢中市行政事業(yè)單位國有資產(chǎn)管理委員會辦公室四級主任科員公務(wù)員招錄1人《行政職業(yè)能力測驗》模擬試卷(答案詳解版)
- 客車交通安全培訓(xùn)課件
- 藝術(shù)培訓(xùn)校長述職報告
- ICU新進(jìn)人員入科培訓(xùn)-ICU常規(guī)監(jiān)護(hù)與治療課件
- 選擇性必修一 期末綜合測試(二)(解析版)2021-2022學(xué)年人教版(2019)高二數(shù)學(xué)選修一
- 學(xué)校制度改進(jìn)
- 各行業(yè)智能客服占比分析報告
評論
0/150
提交評論